Select Git revision
TimedCartesianPlanner.cpp

Sebastian Ebert authored
TimedCartesianPlanner.cpp 4.82 KiB
//
// Created by sebastian on 31.03.20.
//
#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/planning_scene_interface/planning_scene_interface.h>
#include <moveit_msgs/DisplayRobotState.h>
#include <moveit_msgs/DisplayTrajectory.h>
#include <moveit_msgs/AttachedCollisionObject.h>
#include <moveit_msgs/CollisionObject.h>
#include <moveit_visual_tools/moveit_visual_tools.h>
#include <moveit/trajectory_processing/iterative_time_parameterization.h>
#include <trajectory_msgs/JointTrajectoryPoint.h>
/**
* allows time/velocity-constraint planning for cartesian paths
*/
int main(int argc, char **argv)
{
ros::init(argc, argv, "move_group_interface_tutorial");
ros::NodeHandle node_handle;
ros::AsyncSpinner spinner(1);
spinner.start();
// wait for robot init of robot_state_initializer
std::cout << ">>>>>>>>>>>>>>>>> SLEEPING <<<<<<<<<<<<<<<< " << std::endl;
ros::Duration(5.0).sleep();
std::cout << ">>>>>>>>>>>>>>>>> WAKING UP <<<<<<<<<<<<<<<< " << std::endl;
node_handle.setParam("tud_planner_ready", true);
// Visualization Setup
namespace rvt = rviz_visual_tools;
moveit_visual_tools::MoveItVisualTools visual_tools("panda_link0");
visual_tools.deleteAllMarkers();
visual_tools.loadRemoteControl();
Eigen::Isometry3d text_pose = Eigen::Isometry3d::Identity();
text_pose.translation().z() = 1.75;
visual_tools.publishText(text_pose, "Sample constraint planner node", rvt::WHITE, rvt::XLARGE);
// Batch publishing is used to reduce the number of messages being sent to RViz for large visualizations
visual_tools.trigger();
moveit::planning_interface::MoveGroupInterface group("panda_arm");
moveit::planning_interface::PlanningSceneInterface planning_scene_interface;
ros::Publisher display_publisher = node_handle.advertise<moveit_msgs::DisplayTrajectory>("/move_group/display_planned_path", 1, true);
moveit_msgs::DisplayTrajectory display_trajectory;
moveit::planning_interface::MoveGroupInterface::Plan plan;
group.setStartStateToCurrentState();
std::vector<geometry_msgs::Pose> waypoints;
geometry_msgs::Pose start_pose = group.getCurrentPose().pose;
geometry_msgs::Pose target_pose_1 = group.getCurrentPose().pose;
target_pose_1.position.z = start_pose.position.z - 0.2;
target_pose_1.position.y = start_pose.position.y + 0.2;
target_pose_1.position.x = start_pose.position.x + 0.2;
waypoints.push_back(target_pose_1);
geometry_msgs::Pose target_pose_2 = group.getCurrentPose().pose;
target_pose_2.position.z = start_pose.position.z + 0.2;
target_pose_1.position.y = start_pose.position.y - 0.2;
target_pose_2.position.x = start_pose.position.x - 0.2;
waypoints.push_back(target_pose_2);
moveit_msgs::RobotTrajectory trajectory_msg;
group.setPlanningTime(10.0);
double fraction = group.computeCartesianPath(waypoints,0.01,0.0,trajectory_msg, false);
// The trajectory needs to be modified so it will include velocities as well.
// First to create a RobotTrajectory object
robot_trajectory::RobotTrajectory rt(group.getCurrentState()->getRobotModel(), "panda_arm");
// Second get a RobotTrajectory from trajectory
rt.setRobotTrajectoryMsg(*group.getCurrentState(), trajectory_msg);
// Third create a IterativeParabolicTimeParameterization object
trajectory_processing::IterativeParabolicTimeParameterization iptp;
// Fourth compute computeTimeStamps
bool success = iptp.computeTimeStamps(rt);
ROS_INFO("Computed time stamp %s",success?"SUCCEDED":"FAILED");
rt.getRobotTrajectoryMsg(trajectory_msg);
//std::cout << ">>>>>>>>>>>>>>>>> data before: " << trajectory_msg << std::endl;
// adjust velocities, accelerations and time_from_start
for(int i = 0; i < trajectory_msg.joint_trajectory.points.size(); i++)
{
trajectory_msg.joint_trajectory.points[i].time_from_start.operator*=(2);
for(int j = 0; j < trajectory_msg.joint_trajectory.points.at(i).velocities.size(); j++)
{
if(trajectory_msg.joint_trajectory.points.at(i).velocities.at(j) != 0.0){
trajectory_msg.joint_trajectory.points.at(i).velocities.at(j) /= 2;
//trajectory_msg.joint_trajectory.points.at(i).velocities.at(j) = 0;
}
}
for(int j = 0; j < trajectory_msg.joint_trajectory.points.at(i).accelerations.size(); j++)
{
trajectory_msg.joint_trajectory.points.at(i).accelerations.at(j) =
sqrt(std::abs(trajectory_msg.joint_trajectory.points.at(i).accelerations.at(j)));
}
}
//std::cout << ">>>>>>>>>>>>>>>>> data after: " << trajectory_msg << std::endl;
plan.trajectory_ = trajectory_msg;
ROS_INFO("Visualizing plan 4 (cartesian path) (%.2f%% acheived)",fraction * 100.0);
group.execute(plan);
ros::shutdown();
return 0;
}