Skip to content
Snippets Groups Projects
Commit e238d27c authored by Christian Gutsche's avatar Christian Gutsche
Browse files

Better gas components

parent 1bdb3956
No related branches found
No related tags found
No related merge requests found
within PNRG.Backend; within PNRG.Backend;
// The following code is modified Code from PNlib library.
model EnergeticFlowPlace model EnergeticFlowPlace
// The following code is modified Code from PNlib library.
Real t "marking"; Real t "marking";
//****MODIFIABLE PARAMETERS AND VARIABLES BEGIN****// //****MODIFIABLE PARAMETERS AND VARIABLES BEGIN****//
parameter Integer nIn(min = 0) = 0 "number of input transitions" annotation( parameter Integer nIn(min = 0) = 0 "number of input transitions" annotation(
...@@ -91,55 +90,12 @@ protected ...@@ -91,55 +90,12 @@ protected
Real decFactorIn[nIn] "decreasing factors for input transitions"; Real decFactorIn[nIn] "decreasing factors for input transitions";
Real decFactorOut[nOut] "decreasing factors for output transitions"; Real decFactorOut[nOut] "decreasing factors for output transitions";
public public
PNlib.Interfaces.PlaceIn inTransition[nIn](each t=t_, PNlib.Interfaces.PlaceIn inTransition[nIn](each t = t_, each tint = 1, each maxTokens = maxMarks, each maxTokensint = 1, enable = enableIn.TEin_, each emptied = emptying.anytrue, decreasingFactor = decFactorIn, each disPlace = false, each speedSum = firingSumOut.conFiringSum, fire = fireIn, disTransition = disTransitionIn, active = activeIn, arcWeight = arcWeightIn, instSpeed = instSpeedIn, maxSpeed = maxSpeedIn, prelimSpeed = prelimSpeedIn, enabledByInPlaces = enabledByInPlaces) if nIn > 0 "connector for input transitions" annotation(
each tint=1, Placement(transformation(extent = {{-114, -10}, {-98, 10}}, rotation = 0), iconTransformation(extent = {{-116, -10}, {-100, 10}})));
each maxTokens=maxMarks, PNlib.Interfaces.PlaceOut outTransition[nOut](each t = t_, each tint = 1, each minTokens = minMarks, each minTokensint = 1, enable = enableOut.TEout_, each fed = feeding.anytrue, decreasingFactor = decFactorOut, each disPlace = false, each arcType = PNlib.Types.ArcType.NormalArc, each speedSum = firingSumIn.conFiringSum, each tokenInOut = pre(disMarksInOut), fire = fireOut, disTransition = disTransitionOut, active = activeOut, arcWeight = arcWeightOut, instSpeed = instSpeedOut, maxSpeed = maxSpeedOut, prelimSpeed = prelimSpeedOut, each testValue = -1, each testValueint = -1, each normalArc = false) if nOut > 0 "connector for output transitions" annotation(
each maxTokensint=1, Placement(transformation(extent = {{100, -10}, {116, 10}}, rotation = 0)));
enable=enableIn.TEin_, Modelica.Blocks.Interfaces.RealOutput pc_t = t "connector for Simulink connection" annotation(
each emptied = emptying.anytrue, Placement(transformation(extent = {{-36, 68}, {-16, 88}}), iconTransformation(extent = {{-10, -10}, {10, 10}}, rotation = 90, origin = {0, 108})));
decreasingFactor = decFactorIn,
each disPlace = false,
each speedSum= firingSumOut.conFiringSum,
fire=fireIn,
disTransition=disTransitionIn,
active=activeIn,
arcWeight=arcWeightIn,
instSpeed=instSpeedIn,
maxSpeed=maxSpeedIn,
prelimSpeed=prelimSpeedIn,
enabledByInPlaces=enabledByInPlaces) if nIn > 0 "connector for input transitions" annotation(Placement(
transformation(extent={{-114, -10}, {-98, 10}}, rotation=0),
iconTransformation(extent={{-116, -10}, {-100, 10}})));
PNlib.Interfaces.PlaceOut outTransition[nOut](each t = t_,
each tint=1,
each minTokens=minMarks,
each minTokensint=1,
enable=enableOut.TEout_,
each fed=feeding.anytrue,
decreasingFactor=decFactorOut,
each disPlace=false,
each arcType=PNlib.Types.ArcType.NormalArc,
each speedSum=firingSumIn.conFiringSum,
each tokenInOut=pre(disMarksInOut),
fire=fireOut,
disTransition=disTransitionOut,
active=activeOut,
arcWeight=arcWeightOut,
instSpeed=instSpeedOut,
maxSpeed=maxSpeedOut,
prelimSpeed=prelimSpeedOut,
each testValue=-1,
each testValueint=-1,
each normalArc=false) if nOut > 0 "connector for output transitions" annotation(Placement(
transformation(extent={{100, -10}, {116, 10}}, rotation=0)));
Modelica.Blocks.Interfaces.RealOutput pc_t=t
"connector for Simulink connection" annotation(Placement(
transformation(extent={{-36, 68}, {-16, 88}}), iconTransformation(
extent={{-10, -10}, {10, 10}},
rotation=90,
origin={0, 108})));
equation equation
for i in 1:nOut loop for i in 1:nOut loop
arcWeightOut[i] = arcWeightOutSplit[i]*actualPower; arcWeightOut[i] = arcWeightOutSplit[i]*actualPower;
......
...@@ -8,6 +8,7 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -8,6 +8,7 @@ parameter Integer NIn "Number of Inputs" annotation(
parameter Integer prioOut[NOut] "Priority of Outputs" annotation( parameter Integer prioOut[NOut] "Priority of Outputs" annotation(
Dialog(enable = true, group = "General properties")); Dialog(enable = true, group = "General properties"));
Real massInput(unit = "kg"); Real massInput(unit = "kg");
Real massInputs[NIn];
Real totalLoad(unit = "kg"); Real totalLoad(unit = "kg");
PNRG.Interfaces.CO2Input co2Input[NIn] annotation( PNRG.Interfaces.CO2Input co2Input[NIn] annotation(
Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
...@@ -18,9 +19,10 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -18,9 +19,10 @@ parameter Integer NIn "Number of Inputs" annotation(
PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation( PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation(
Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation equation
massInput = t1.power*t1.actualSpeed./t1.maximumSpeed; massInput = sum(massInputs);
totalLoad = sum(co2Output.arcWeight); totalLoad = sum(co2Output.arcWeight);
for i in 1:NIn loop for i in 1:NIn loop
massInputs[i] = co2Input[i].arcWeight*co2Input[i].instSpeed/co2Input[i].maxSpeed;
connect(co2Input[i], t1.inPlaces[i]) annotation( connect(co2Input[i], t1.inPlaces[i]) annotation(
Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5)); Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5));
end for; end for;
......
within PNRG.Distribution;
model DCACConverter
Real inputPower(unit = "kW");
Real outputPower(unit = "kW");
parameter Real efficiency "Energy conversion effiency" annotation(
Dialog(enable = true, group = "General properties"));
Interfaces.ElectricalInput electricalInput annotation(
Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Interfaces.ElectricalOutput electricalOutput annotation(
Placement(visible = true, transformation(origin = {110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Backend.EnergeticFlowPlace p1(nIn = 1, nOut = 1) annotation(
Placement(visible = true, transformation(origin = {60, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Backend.EnergeticTransitionWithoutActivator t11(arcWeightOut = {outputPower}, maximumSpeed = 1/3600, nIn = 1, nOut = 1) annotation(
Placement(visible = true, transformation(origin = {2, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation
inputPower = t11.power;
outputPower = inputPower*efficiency;
connect(t11.outPlaces[1], p1.inTransition[1]) annotation(
Line(points = {{6, 0}, {50, 0}}, thickness = 0.5));
connect(p1.outTransition[1], electricalOutput) annotation(
Line(points = {{70, 0}, {110, 0}}));
connect(t11.inPlaces[1], electricalInput) annotation(
Line(points = {{-2, 0}, {-110, 0}}));
annotation(
Icon(graphics = {Rectangle(fillColor = {255, 255, 255}, fillPattern = FillPattern.Solid, extent = {{-100, 100}, {100, -100}}), Text(origin = {-45, 119}, extent = {{-53, 23}, {53, -23}}, textString = "%name"), Line(points = {{-100, -100}, {100, 100}, {100, 100}}), Rectangle(origin = {-49, 75}, lineColor = {255, 200, 0}, fillColor = {255, 200, 0}, fillPattern = FillPattern.Solid, extent = {{-37, 7}, {37, -7}}), Text(origin = {37, -60}, textColor = {255, 200, 0}, extent = {{-227, 108}, {227, -108}}, textString = "~", fontName = "Arial"), Rectangle(origin = {-49, 53}, lineColor = {255, 200, 0}, fillColor = {255, 200, 0}, fillPattern = FillPattern.Solid, extent = {{-37, 7}, {37, -7}})}),
Diagram(coordinateSystem(extent = {{-120, 100}, {120, -160}})));
end DCACConverter;
...@@ -10,6 +10,7 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -10,6 +10,7 @@ parameter Integer NIn "Number of Inputs" annotation(
Dialog(enable = true, group = "General properties")); Dialog(enable = true, group = "General properties"));
Real powerDifference(unit = "kW") "Difference between power suply and consumption"; Real powerDifference(unit = "kW") "Difference between power suply and consumption";
Real powerInput(unit = "kW"); Real powerInput(unit = "kW");
Real powerInputs[NIn];
Real totalLoad(unit = "kW"); Real totalLoad(unit = "kW");
PNRG.Interfaces.HeatInput heatInput[NIn] annotation( PNRG.Interfaces.HeatInput heatInput[NIn] annotation(
Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
...@@ -20,10 +21,11 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -20,10 +21,11 @@ parameter Integer NIn "Number of Inputs" annotation(
PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation( PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation(
Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation equation
powerInput = t1.power*t1.actualSpeed./t1.maximumSpeed; powerInput = sum(powerInputs);
totalLoad = sum(heatOutput.arcWeight); totalLoad = sum(heatOutput.arcWeight);
powerDifference = powerInput - totalLoad; powerDifference = powerInput - totalLoad;
for i in 1:NIn loop for i in 1:NIn loop
powerInputs[i] = heatInput[i].arcWeight*heatInput[i].instSpeed/heatInput[i].maxSpeed;
connect(heatInput[i], t1.inPlaces[i]) annotation( connect(heatInput[i], t1.inPlaces[i]) annotation(
Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5)); Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5));
end for; end for;
......
...@@ -10,6 +10,7 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -10,6 +10,7 @@ parameter Integer NIn "Number of Inputs" annotation(
Dialog(enable = true, group = "General properties")); Dialog(enable = true, group = "General properties"));
Real powerDifference(unit = "kW") "Difference between power suply and consumption"; Real powerDifference(unit = "kW") "Difference between power suply and consumption";
Real powerInput(unit = "kW"); Real powerInput(unit = "kW");
Real massInputs[NIn];
Real totalLoad(unit = "kW"); Real totalLoad(unit = "kW");
PNRG.Interfaces.HydrogenInput hydrogenInput[NIn] annotation( PNRG.Interfaces.HydrogenInput hydrogenInput[NIn] annotation(
Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
...@@ -20,10 +21,11 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -20,10 +21,11 @@ parameter Integer NIn "Number of Inputs" annotation(
PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation( PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation(
Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation equation
powerInput = t1.power*t1.actualSpeed./t1.maximumSpeed; powerInput = sum(massInputs);
totalLoad = sum(hydrogenOutput.arcWeight); totalLoad = sum(hydrogenOutput.arcWeight);
powerDifference = powerInput - totalLoad; powerDifference = powerInput - totalLoad;
for i in 1:NIn loop for i in 1:NIn loop
massInputs[i] = hydrogenInput[i].arcWeight*hydrogenInput[i].instSpeed/hydrogenInput[i].maxSpeed;
connect(hydrogenInput[i], t1.inPlaces[i]) annotation( connect(hydrogenInput[i], t1.inPlaces[i]) annotation(
Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5)); Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5));
end for; end for;
......
...@@ -8,6 +8,7 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -8,6 +8,7 @@ parameter Integer NIn "Number of Inputs" annotation(
parameter Integer prioOut[NOut] "Priority of Outputs" annotation( parameter Integer prioOut[NOut] "Priority of Outputs" annotation(
Dialog(enable = true, group = "General properties")); Dialog(enable = true, group = "General properties"));
Real massInput(unit = "kg"); Real massInput(unit = "kg");
Real massInputs[NIn];
Real totalLoad(unit = "kg"); Real totalLoad(unit = "kg");
PNRG.Interfaces.OxygenInput oxygenInput[NIn] annotation( PNRG.Interfaces.OxygenInput oxygenInput[NIn] annotation(
Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
...@@ -18,9 +19,10 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -18,9 +19,10 @@ parameter Integer NIn "Number of Inputs" annotation(
PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation( PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation(
Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation equation
massInput = t1.power*t1.actualSpeed./t1.maximumSpeed; massInput = sum(massInputs);
totalLoad = sum(oxygenOutput.arcWeight); totalLoad = sum(oxygenOutput.arcWeight);
for i in 1:NIn loop for i in 1:NIn loop
massInputs[i] = oxygenInput[i].arcWeight*oxygenInput[i].instSpeed/oxygenInput[i].maxSpeed;
connect(oxygenInput[i], t1.inPlaces[i]) annotation( connect(oxygenInput[i], t1.inPlaces[i]) annotation(
Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5)); Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5));
end for; end for;
......
...@@ -10,6 +10,7 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -10,6 +10,7 @@ parameter Integer NIn "Number of Inputs" annotation(
Dialog(enable = true, group = "General properties")); Dialog(enable = true, group = "General properties"));
Real powerDifference(unit = "kg") "Difference between power suply and consumption"; Real powerDifference(unit = "kg") "Difference between power suply and consumption";
Real powerInput(unit = "kg"); Real powerInput(unit = "kg");
Real massInputs[NIn];
Real totalLoad(unit = "kg"); Real totalLoad(unit = "kg");
PNRG.Interfaces.WaterInput waterInput[NIn] annotation( PNRG.Interfaces.WaterInput waterInput[NIn] annotation(
Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-110, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {-110, 80}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
...@@ -20,10 +21,11 @@ parameter Integer NIn "Number of Inputs" annotation( ...@@ -20,10 +21,11 @@ parameter Integer NIn "Number of Inputs" annotation(
PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation( PNlib.Components.PC p1(enablingPrioOut = prioOut, nIn = 1, nOut = NOut) annotation(
Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {46, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation equation
powerInput = t1.power*t1.actualSpeed./t1.maximumSpeed; powerInput = sum(massInputs);
totalLoad = sum(waterOutput.arcWeight); totalLoad = sum(waterOutput.arcWeight);
powerDifference = powerInput - totalLoad; powerDifference = powerInput - totalLoad;
for i in 1:NIn loop for i in 1:NIn loop
massInputs[i] = waterInput[i].arcWeight*waterInput[i].instSpeed/waterInput[i].maxSpeed;
connect(waterInput[i], t1.inPlaces[i]) annotation( connect(waterInput[i], t1.inPlaces[i]) annotation(
Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5)); Line(points = {{-31.2, 0}, {34.8, 0}}, thickness = 0.5));
end for; end for;
......
...@@ -8,3 +8,4 @@ OxygenPipe ...@@ -8,3 +8,4 @@ OxygenPipe
HeatPipe HeatPipe
CO2Pipe CO2Pipe
NaturalGasPipe NaturalGasPipe
DCACConverter
...@@ -18,7 +18,7 @@ model EnergyPark ...@@ -18,7 +18,7 @@ model EnergyPark
PNRG.PowerPlants.PVPowerPlant pVPowerPlant(areaPV = 1000) annotation( PNRG.PowerPlants.PVPowerPlant pVPowerPlant(areaPV = 1000) annotation(
Placement(visible = true, transformation(origin = {-120, 74}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-120, 74}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.EnergyConsumer.ElectricityConsumer electricityConsumer annotation( PNRG.EnergyConsumer.ElectricityConsumer electricityConsumer annotation(
Placement(visible = true, transformation(origin = {182, 114}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {182, 116}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.Distribution.OxygenPipe oxygenPipe(NIn = 1, NOut = 1, prioOut = {1}) annotation( PNRG.Distribution.OxygenPipe oxygenPipe(NIn = 1, NOut = 1, prioOut = {1}) annotation(
Placement(visible = true, transformation(origin = {-4, 56}, extent = {{-12, 4}, {12, 12}}, rotation = 0))); Placement(visible = true, transformation(origin = {-4, 56}, extent = {{-12, 4}, {12, 12}}, rotation = 0)));
PNRG.Distribution.HydrogenPipe hydrogenPipe(NIn = 1, NOut = 1, prioOut = {1}) annotation( PNRG.Distribution.HydrogenPipe hydrogenPipe(NIn = 1, NOut = 1, prioOut = {1}) annotation(
...@@ -34,7 +34,7 @@ model EnergyPark ...@@ -34,7 +34,7 @@ model EnergyPark
PNRG.Distribution.WaterPipe waterPipe1(NIn = 1, NOut = 1, prioOut = {1}) annotation( PNRG.Distribution.WaterPipe waterPipe1(NIn = 1, NOut = 1, prioOut = {1}) annotation(
Placement(visible = true, transformation(origin = {62, 36}, extent = {{12, 4}, {-12, 12}}, rotation = 0))); Placement(visible = true, transformation(origin = {62, 36}, extent = {{12, 4}, {-12, 12}}, rotation = 0)));
PNRG.Sources.FileToTransitionOutput fileToTransitionOutput11(NOut = 1, fileName = "P:/Programs/PNRG/data4.txt", tableName = "tab1") annotation( PNRG.Sources.FileToTransitionOutput fileToTransitionOutput11(NOut = 1, fileName = "P:/Programs/PNRG/data4.txt", tableName = "tab1") annotation(
Placement(visible = true, transformation(origin = {182, 134}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {182, 136}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression(NOut = 1, expression = time > 70000) annotation( PNRG.Logics.LogicalExpression logicalExpression(NOut = 1, expression = time > 70000) annotation(
Placement(visible = true, transformation(origin = {96, 188}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {96, 188}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression1(NOut = 1, expression = time > 70000) annotation( PNRG.Logics.LogicalExpression logicalExpression1(NOut = 1, expression = time > 70000) annotation(
...@@ -43,13 +43,13 @@ model EnergyPark ...@@ -43,13 +43,13 @@ model EnergyPark
Placement(visible = true, transformation(origin = {72, 174}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {72, 174}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression111(NOut = 1, expression = time > 70000) annotation( PNRG.Logics.LogicalExpression logicalExpression111(NOut = 1, expression = time > 70000) annotation(
Placement(visible = true, transformation(origin = {72, 200}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {72, 200}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression1111(NOut = 1, expression = 39.4 + electricityConsumer.powerConsumption < distributionPowerGrid.powerInput) annotation( PNRG.Logics.LogicalExpression logicalExpression1111(NOut = 1, expression = true) annotation(
Placement(visible = true, transformation(origin = {-28, 202}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-28, 202}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression11111(NOut = 1, expression = 39.4 + electricityConsumer.powerConsumption < distributionPowerGrid.powerInput) annotation( PNRG.Logics.LogicalExpression logicalExpression11111(NOut = 1, expression = true) annotation(
Placement(visible = true, transformation(origin = {-28, 176}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-28, 176}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression111111(NOut = 1, expression = 39.4 + electricityConsumer.powerConsumption < distributionPowerGrid.powerInput) annotation( PNRG.Logics.LogicalExpression logicalExpression111111(NOut = 1, expression = true) annotation(
Placement(visible = true, transformation(origin = {-28, 150}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-28, 150}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression1111111(NOut = 1, expression = 39.4 + electricityConsumer.powerConsumption < distributionPowerGrid.powerInput) annotation( PNRG.Logics.LogicalExpression logicalExpression1111111(NOut = 1, expression = true) annotation(
Placement(visible = true, transformation(origin = {-52, 164}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-52, 164}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
PNRG.Sources.StochasticSource stochasticSource(NOut = 1) annotation( PNRG.Sources.StochasticSource stochasticSource(NOut = 1) annotation(
Placement(visible = true, transformation(origin = {182, 38}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {182, 38}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
...@@ -57,7 +57,7 @@ model EnergyPark ...@@ -57,7 +57,7 @@ model EnergyPark
Placement(visible = true, transformation(origin = {182, 18}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {182, 18}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.Storage.Battery battery(power = 2) annotation( PNRG.Storage.Battery battery(power = 2) annotation(
Placement(visible = true, transformation(origin = {20, 138}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {20, 138}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression2(NOut = 1, expression = 39.4 + electricityConsumer.powerConsumption+ 10 < distributionPowerGrid.powerInput) annotation( PNRG.Logics.LogicalExpression logicalExpression2(NOut = 1, expression = time> 50000) annotation(
Placement(visible = true, transformation(origin = {96, 162}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {96, 162}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
PNRG.Logics.LogicalExpression logicalExpression21(NOut = 1, expression = false) annotation( PNRG.Logics.LogicalExpression logicalExpression21(NOut = 1, expression = false) annotation(
Placement(visible = true, transformation(origin = {-52, 190}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-52, 190}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
...@@ -111,7 +111,7 @@ equation ...@@ -111,7 +111,7 @@ equation
connect(h2Tank.hydrogenOutput, hydrogenPipe1.hydrogenInput[1]) annotation( connect(h2Tank.hydrogenOutput, hydrogenPipe1.hydrogenInput[1]) annotation(
Line(points = {{41, 84}, {51, 84}}, color = {106, 168, 79})); Line(points = {{41, 84}, {51, 84}}, color = {106, 168, 79}));
connect(fileToTransitionOutput11.fileOutput[1], electricityConsumer.fileInput) annotation( connect(fileToTransitionOutput11.fileOutput[1], electricityConsumer.fileInput) annotation(
Line(points = {{171, 134}, {166, 134}, {166, 120}, {171, 120}}, color = {150, 150, 150})); Line(points = {{171, 136}, {166, 136}, {166, 122}, {171, 122}}, color = {150, 150, 150}));
connect(logicalExpression111111.logicalOutput[1], h2Tank.logicalInput) annotation( connect(logicalExpression111111.logicalOutput[1], h2Tank.logicalInput) annotation(
Line(points = {{-17, 150}, {2, 150}, {2, 90}, {19, 90}}, color = {53, 28, 117})); Line(points = {{-17, 150}, {2, 150}, {2, 90}, {19, 90}}, color = {53, 28, 117}));
connect(logicalExpression11111.logicalOutput[1], o2Tank.logicalInput) annotation( connect(logicalExpression11111.logicalOutput[1], o2Tank.logicalInput) annotation(
...@@ -181,7 +181,7 @@ equation ...@@ -181,7 +181,7 @@ equation
connect(fileToTransitionOutput.fileOutput[2], sTEPowerPlant.fileInput) annotation( connect(fileToTransitionOutput.fileOutput[2], sTEPowerPlant.fileInput) annotation(
Line(points = {{-149, 74}, {-141, 74}, {-141, 24}, {-131, 24}}, color = {150, 150, 150})); Line(points = {{-149, 74}, {-141, 74}, {-141, 24}, {-131, 24}}, color = {150, 150, 150}));
connect(distributionPowerGrid.electricalOutput[1], electricityConsumer.electricalInput) annotation( connect(distributionPowerGrid.electricalOutput[1], electricityConsumer.electricalInput) annotation(
Line(points = {{40.5, 116}, {104.75, 116}, {104.75, 114}, {171, 114}}, color = {255, 200, 0})); Line(points = {{40.5, 116}, {171, 116}}, color = {255, 200, 0}));
connect(naturalGasPowerPlant2.electricalOutput, distributionPowerGrid.electricalInput[4]) annotation( connect(naturalGasPowerPlant2.electricalOutput, distributionPowerGrid.electricalInput[4]) annotation(
Line(points = {{-87, -39}, {-87, -38.5}, {-81, -38.5}, {-81, 116}, {7.5, 116}}, color = {255, 200, 0})); Line(points = {{-87, -39}, {-87, -38.5}, {-81, -38.5}, {-81, 116}, {7.5, 116}}, color = {255, 200, 0}));
protected protected
......
...@@ -15,7 +15,7 @@ model simpleExample ...@@ -15,7 +15,7 @@ model simpleExample
Placement(visible = true, transformation(origin = {-80, -44}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-80, -44}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.EnergyConsumer.ElectricityConsumer electricityConsumer annotation( PNRG.EnergyConsumer.ElectricityConsumer electricityConsumer annotation(
Placement(visible = true, transformation(origin = {150, -14}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {150, -14}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.PowerPlants.WindPowerPlant windPowerPlant(efficiencyTurbine = 0.5, number = testController.N, rotorLength = 3) annotation( PNRG.PowerPlants.WindPowerPlant windPowerPlant(efficiencyTurbine = 0.4, number = testController.N, rotorLength = 3) annotation(
Placement(visible = true, transformation(origin = {-80, -20}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {-80, -20}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.Storage.Battery battery(power = 10) annotation( PNRG.Storage.Battery battery(power = 10) annotation(
Placement(visible = true, transformation(origin = {64, -12}, extent = {{10, -10}, {-10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {64, -12}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
...@@ -38,7 +38,7 @@ model simpleExample ...@@ -38,7 +38,7 @@ model simpleExample
EnergyConsumer.ElectricityConsumer electricityConsumer1 annotation( EnergyConsumer.ElectricityConsumer electricityConsumer1 annotation(
Placement(visible = true, transformation(origin = {150, -44}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); Placement(visible = true, transformation(origin = {150, -44}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
PNRG.Logics.LogicalAnd logicalAnd annotation( PNRG.Logics.LogicalAnd logicalAnd annotation(
Placement(visible = true, transformation(origin = {-50, 48}, extent = {{-10, -10}, {10, 10}}, rotation = -90))); Placement(visible = true, transformation(origin = {-50, 56}, extent = {{-10, -10}, {10, 10}}, rotation = -90)));
Logics.LogicalOr logicalOr annotation( Logics.LogicalOr logicalOr annotation(
Placement(visible = true, transformation(origin = {82, 40}, extent = {{-10, -10}, {10, 10}}, rotation = -90))); Placement(visible = true, transformation(origin = {82, 40}, extent = {{-10, -10}, {10, 10}}, rotation = -90)));
Logics.LogicalExpression logicalExpression2(NOut = 1, expression = testController.N < testController.NMax) annotation( Logics.LogicalExpression logicalExpression2(NOut = 1, expression = testController.N < testController.NMax) annotation(
...@@ -77,11 +77,11 @@ equation ...@@ -77,11 +77,11 @@ equation
connect(fileToTransitionOutput11.fileOutput[1], electricityConsumer1.fileInput) annotation( connect(fileToTransitionOutput11.fileOutput[1], electricityConsumer1.fileInput) annotation(
Line(points = {{121, 50}, {128, 50}, {128, -38}, {139, -38}}, color = {150, 150, 150})); Line(points = {{121, 50}, {128, 50}, {128, -38}, {139, -38}}, color = {150, 150, 150}));
connect(logicalAnd.logicalOutput, testController.logicalInput1) annotation( connect(logicalAnd.logicalOutput, testController.logicalInput1) annotation(
Line(points = {{-50, 37}, {-50.5, 37}, {-50.5, 31}, {-51, 31}}, color = {53, 28, 117})); Line(points = {{-50, 45}, {-50.5, 45}, {-50.5, 31}, {-51, 31}}, color = {53, 28, 117}));
connect(logicalExpression.logicalOutput[2], logicalAnd.logicalInput1) annotation( connect(logicalExpression.logicalOutput[2], logicalAnd.logicalInput1) annotation(
Line(points = {{22, 98}, {30, 98}, {30, 78}, {-45, 78}, {-45, 59}}, color = {53, 28, 117})); Line(points = {{22, 98}, {30, 98}, {30, 78}, {-45, 78}, {-45, 67}}, color = {53, 28, 117}));
connect(logicalExpression11.logicalOutput[1], logicalAnd.logicalInput2) annotation( connect(logicalExpression11.logicalOutput[1], logicalAnd.logicalInput2) annotation(
Line(points = {{-69, 78}, {-55, 78}, {-55, 59}}, color = {53, 28, 117})); Line(points = {{-69, 78}, {-55, 78}, {-55, 67}}, color = {53, 28, 117}));
connect(logicalOr.logicalOutput, battery.logicalInput) annotation( connect(logicalOr.logicalOutput, battery.logicalInput) annotation(
Line(points = {{82, 30}, {82, -6}, {76, -6}}, color = {53, 28, 117})); Line(points = {{82, 30}, {82, -6}, {76, -6}}, color = {53, 28, 117}));
connect(logicalExpression.logicalOutput[1], logicalOr.logicalInput) annotation( connect(logicalExpression.logicalOutput[1], logicalOr.logicalInput) annotation(
......
# PNRG # PNRG
The Petri Net Renewable Energy Grids library (PNRG) is a library for modeling energy systems based on Hybrid Petri net. The models are based on the Petri net implementation of the [PNlib library](https://github.com/AMIT-HSBI/PNlib/tree/master).
The goal is to model energy systems in different states and to control the state transitions within Modelica using the same Petri net structure that is used for the model itself.
## Getting started ## License
To make it easy for you to get started with GitLab, here's a list of recommended next steps.
Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
## Add your files
- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
```
cd existing_repo
git remote add origin https://git-st.inf.tu-dresden.de/cgutsche/PNRG.git
git branch -M main
git push -uf origin main
```
## Integrate with your tools
- [ ] [Set up project integrations](https://git-st.inf.tu-dresden.de/cgutsche/PNRG/-/settings/integrations)
## Collaborate with your team
- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
- [ ] [Automatically merge when pipeline succeeds](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
## Test and Deploy
Use the built-in continuous integration in GitLab.
- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing(SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
***
# Editing this README
When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to [makeareadme.com](https://www.makeareadme.com/) for this template.
## Suggestions for a good README
Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
## Name
Choose a self-explaining name for your project.
## Description
Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
## Badges
On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
## Visuals
Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
## Installation
Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
## Usage
Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
## Support
Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
## Roadmap
If you have ideas for releases in the future, it is a good idea to list them in the README.
## Contributing
State if you are open to contributions and what your requirements are for accepting them.
For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser. This Modelica package is free software and the use is completely at your own risk; it can be redistributed and/or modified under the terms of the [Modelica License 2](https://modelica.org/licenses/ModelicaLicense2/).
## Authors and acknowledgment
Show your appreciation to those who have contributed to the project.
## License ## Contact
For open source projects, say how it is licensed.
## Project status For questions, remarks and suggestions please send me an e-mail: christian.gutsche@tu-dresden.de
If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers. \ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment