Continuous Model Validation using Reference Attribute Grammars

Johannes Mey\(^1\), René Schöne\(^1\), Görel Hedin\(^2\), Emma Söderberg\(^2\), Thomas Kühn\(^1\), Niklas Fors\(^2\), Jesper Öqvist\(^2\), and Uwe Aßmann\(^1\)

\(^1\)Technische Universität Dresden
\(^2\)Lund University

State-of-the-Art Using RAGs and jastAdd [2]

Region	Route : \text{Sensor} => Sensor; \\
\text{SwitchPosition}	\text{TinkerGraph} => \text{Position} \text{Sensor} \text{region}; \\
\text{Sensor}	\text{Requirement} \text{region}; \\
\text{abstract} \text{TrackElement}	\text{TinkerGraph} => \text{Position} \text{Sensor} \text{region}; \\

Named Lookup

```java
@Region
public class Map<Integer, Sensor> sensors = ...;
```

Introducing Relations

```java
public void Route.addRefToSensor(Sensor sensor) {
    ...;
} public void Route.removeRefToSensor(Sensor sensor) {
    ...;
}
```

Grammar Extension

```java
public void Route.addRefToSensor(Sensor sensor) {
    ...;
}
```

Evaluation within the Trainbenchmark

![Graph showing evaluation results](image)

Problem: Efficient Navigation of Non-containment References

- **RAGs [1]** can be used for models@runtime providing some advantages
 - Separation of structure and computation
 - Shortcuts for navigation and computation on trees
 - Efficiency through memoization of computed values
 - Incremental computation, i.e., invalidating of outdated cached values
- **Major issue**: Non-containment references cannot be encoded efficiently w.r.t. performance and consistency

Advantages of our Grammar Extension

- Less boilerplate code to write
- More consistency
- Better performance

Contact:
- Johannes Mey: johannes.meystett@tu-dresden.de
- René Schöne: rene.schoenette@tu-dresden.de
- Görel Hedin: gorulin@cs.mdh.se
- Emma Söderberg: emma.soderberg@cs.lth.se
- Thomas Kühn: thomas.kuehn3@tu-dresden.de
- Niklas Fors: niklas.fors@cs.lth.se
- Jesper Öqvist: jesper.øqvist@cs.lth.se

Acknowledgments: This work is partly supported by the German Research Foundation (DFG) in the SFB 912 “Highly Adaptive Energy-Efficient Computing”, the project “RISOS” and within the Research Training Group “Role-based Software Infrastructures for continuous-context-sensitive Systems” (GRK 1987) by the German Federal Ministry of Education and Research within the project “OpenLid”. This work is also partly supported by the Swedish Governmental Agency for Innovation Systems (VINNOVA) in the PhD project 2017-0371 and by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation (KAW).