
Fakultät Informatik Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

Design and Implementation of a
Model-based Architecture for
Cobotic Cells
Nikhil Ambardar
nikhil.ambardar@tu-dresden.deBorn on: 5th November 1989 in Mumbai, IndiaCourse: Distributed Systems EngineeringMatriculation number: 4667008Matriculation year: 2016

Master Thesis
to achieve the academic degree
Master of Science (M.Sc.)

Supervisors
Dr. Sebastian Götz ,
Dipl.-Inf. Johannes Mey , and
Dipl.-Inf. Sebestian Ebert
Supervising professor
Prof. Dr. rer. nat habil. Uwe Aßmann

Submitted on: 27th October 2020

mailto:nikhil.ambardar@tu-dresden.de


Contents

1 INTRODUCTION 41.1 Robots and Cobots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Components Of a Typical Robot . . . . . . . . . . . . . . . . . . . . . . . 61.3 Uses And Applied Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.1 Elderly Care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.2 Medical Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.3 Warehouse Operator . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.4 Food Home Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . 81.3.5 Automotive Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 81.4 Importance Of Robots In Today’s Time . . . . . . . . . . . . . . . . . . . 81.5 Expectations From Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 91.6 Evolution - Robots to Cobots . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 INSPIRATION AND DRIVING FORCE 10

3 BACKGROUND 123.1 About Franka Emika Panda Robot . . . . . . . . . . . . . . . . . . . . . . 123.2 Robotics - Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.2 Drive a.k.a Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2.3 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2.4 Collision Detection and Reaction . . . . . . . . . . . . . . . . . . 143.3 Software Tools Robot Franka Uses . . . . . . . . . . . . . . . . . . . . . . 153.4 Robotic Coexistence With Humans - Meaning Of Cobots . . . . . . . . . 153.4.1 Existence Alongside Humans . . . . . . . . . . . . . . . . . . . . . 163.4.2 Collaboration and Co-operation . . . . . . . . . . . . . . . . . . . 163.4.3 Real-time and Presence Acknowledged Collaboration . . . . . . 163.5 Accidents Due To Malfunctions and Consequences . . . . . . . . . . . . 163.5.1 Mechanical Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.5.2 Electrical Anomaly In Components . . . . . . . . . . . . . . . . . 173.5.3 Malfunctioning Software . . . . . . . . . . . . . . . . . . . . . . . 173.5.4 Human Operator Errors . . . . . . . . . . . . . . . . . . . . . . . 173.6 Making Robots Safer And Safe Deployment Practices . . . . . . . . . . . 18
4 STATE OF THE ART 204.1 Motion Planning And Simulations . . . . . . . . . . . . . . . . . . . . . . 20

2



4.2 Modeling - Explaining Choice of Design Depictions . . . . . . . . . . . . 204.2.1 Unified Modeling Language (UML) Diagram For World ModelClass Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.2.2 Business Process Modeling Notation (BPMN) for Application Model 234.2.3 Unified Modeling Language State Machine for Safety Model . . 254.3 Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264.3.1 Setup Environment Using ROS To Run Services, Motion PlanningIn MOVEIT and GAZEBO For Simulations and more . . . . . . . 26
5 CONCEPT 325.1 Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325.2 The Models Designed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.3 Programming Of Hardware And Software Components - Purpose AndConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.4 Refactoring and Reclassification . . . . . . . . . . . . . . . . . . . . . . . 385.5 Connecting Everything - Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6 IMPLEMENTATION 406.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406.2 WORLD MODEL IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . 416.2.1 Programming - The Implementation Of World Model . . . . . . 426.3 Future Work Implementing Application Model Programmatically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7 EVALUVATION 467.0.1 World Model Implementation Results . . . . . . . . . . . . . . . 467.1 World Model Test Implementation . . . . . . . . . . . . . . . . . . . . . . 46
Bibliography 48

3



1 INTRODUCTION
Objective Of Thesis: Design and Implementation of a Model-Based Architecture forCobotic Cells.

1.1 Robots and Cobots

A robot is a machine developed by humans to do work for them and to make theirlives easy. Humans had to keep doing repetitive tasks throughout history which wereessential things to do and there have been times when enough manpower was absentor unavailable to do the required work. This led to humans to think about designing amachine which can obey their commands to accomplish a series of steps to do a job.They then described these machines as a robot.
In fact, any machine designed for any specific task and purpose can be termed as arobot. But the term "robot" is generally described as a machine that is versatile and canaccomplish a range of tasks. The robot is characterized by few qualities like motion inthe body of robot i.e. it must be able to move itself, motion of control surfaces like arm,robot must be able to do the task it is designed for, like pickup and place down objects,or be able to work at a factory assembly line, at the same time must be able to providesafety to some degree. Robots must provide some or all of these qualities according tothe purpose it is designed for .There are other aspects which can be adding and remov-ing control surfaces to suit a specific type of job or size of area of field of the work profile.
Along the evolution of time the machines developed from designing basic toolsto varying degrees of complexities like space robots. As decades and centuries oftime passed by, human thinking evolved and refined, their outlook towards machinesimproved and so did their skills with machines to make them more self containedand all this was done to reduce human intervention for decision making. To start withthese were elementary forms of machines which are principally described as robots.Nowadays humans are trying to build in artificial intelligence into robots to make themself reliant. One example is self driving cars which are being designed. In the futurethese cars will have a high level of artificial intelligence built into them which will makethem very reliable performer.
New features were built into machines to add functionality and this was done using

4



physical mechanisms in early days like using valves for changing and redirecting watersupply in pipes and tracks change railroad paths using levers. But as times changedand many levels of developments happened for physical machines using some form ofintelligence then came the era of information technology and development of softwaresystems and programming which was used to control hardware until the last level ofaction. This was done using a host of components added to hardware which linked itto software systems and they were first circuits which then turned to micro-controllers,and then to electronic components that could be programmed and integrated withphysical systems which were then used to manipulate control surfaces thus forminghigh level of evolution in robotics [6](Chapter1).
Robotics is a relatively new and evolved technical field. It is an evolved version oftechnical development of machines and software field which are both part of robotics.It won’t be wrong to claim that robotics is epitome of technical development in ma-chines. Nonetheless robotics is still a very expensive field of research. Robots have ahigh one time cost as well as very high operational, development and research costsand if in a broken down condition can become expensive to fix. It is still evolving andstudied as a modern research area and it is continuously expanding and acting as abase to develop other technologies. Study of robotics is only available to a lucky fewpeople and research is done every day to make it affordable and accessible to moregeneral people. There are many industrial organizations dealing with robotics fieldand they are doing extensive research for it.
This has nowadays led to creation of an ecosystem of machines which are versatileand follow hook and template structure to domany tasks using same kind of concept i.etechnology was used for multiple purposes thus adding to versatility. This has added tofunctionalities of robots and made themmuch more versatile and cost efficient as theycan be used to perform multiple jobs. This is akin to using different attachments on amodern day vacuum cleaning machine to the the same job of vacuuming by suction.Robots in today’s time are meant to do easiest of tasks like moving objects aroundand giving company to elderly, to complex tasks like critical surgical operations onhumans in medicine and working on automobile manufacturing and assembly line [41].
Robots are very essential to some of the today’s modern industry because theyhelp humans accomplish tasks which otherwise are too difficult to perform with thespeed and accuracy with which robots can do them. In addition robots can performtirelessly and do not cringe if they work in day or night. This makes them a versatiletool that is friendly and beneficial to humans. The robots thus need to live, work andperform alongside humans in most cases. This is usually critical in factories and alsohomes where they are used nowadays. These robots maybe very intelligent and thismakes them very capable but in most cases they cannot completely replace humanpresence which is still required to monitor robotic operations and sometimes humansare required to alter plans and make decisions as per orders and this gives birth toa situation where robots need to work alongside humans and this involves only safeoperations because in the event robots cause injury to human it can cause very serioussituations and hazard to human well being and may also cause death of a person [36].Here comes the concept for cobots. They are robots which are built to perform along-side humans and this too safely. The word cobot is derived from so called collaborativerobots which are kind of robots made to perform alongside human presence in acommonly used area. Most times they are in very close proximity working alongsideeach other but the design decisions andmulti level safety which range from soft built to

5



Figure 1.1 Image Source - Footnote 1
auto-emergency stop features ensure they can work very reliably alongside each other.

1

1.2 Components Of a Typical Robot

Any robot is a machine that is made up of mainly steel, plastic and more complexmaterials put together and typically needs electric power to run and perform somework. Robots are programmed using computer software in today’s times. Softwaredictate the robotic parameters and manipulate control surfaces by reading sensorvalues to enable decision making as per the situation detected and decisive actionpre-programmed for it. This can be used to fine tune its actions to perform most com-plex of tasks independently [22](Chapter1). Robots in today’s times have embeddedcontrol built in, which guide the robot to do a job safely in real world environmentsetting.
Robots range from auto/semi-automatic functional form to resembling human formtype to industrial grade and medically utilized robots. Robots have been made tolook and behave exactly like humans in present time and this is achieved by usingsoft silicone materials which makes them look sophisticated and intelligent in a homesetting. But they are not always designed for good looks and in industry setting theyare bare bone machines most time lacking even correct covering and this is to aid inmaintenance and improve operational functionality. Today robotics is working withcutting edge research enabling it to function up to the level of developing safe self

11.https://blogs.3ds.com/northamerica/future-robots-and-ensuring-human-safety/

6



driving cars [10].
So it can be concluded that robotic components are body/frame, control system,control surfaces, and drive train.

1.3 Uses And Applied Fields

Robots have been developed to suit and work in various fields in today’s time. In-factthere is an appropriate type of robot for almost any work today. They range frommost easy work to the most complex of tasks. In this section more light on this area isthrown by describing some use cases [29](Chapter1).

1.3.1 Elderly Care

Robots are used in home setting to provide company to lonely elderly and give careto them. There are soft bodied robots made up of silicone used in Japan, and this isa place with sparse population and few people to care for elderly. These machinesthere help the seniors from keeping track of their medicines to playing music to themas well as talking to them. They move objects for them, monitor their health and evenhelp in distress by calling help for lonely seniors [34].

1.3.2 Medical Uses

Robots are used in regular and critical surgeries performed on humans in today’stime. The performance of robots as compared to humans is very high in critical hu-man diagnostic operations like C-section surgeries and much more complex ones likeangioplasty.
The can performmedical procedures very fast and with clean cuts and stitches that ahuman hand is not capable of performing. They can as well perform knee replacementsurgeries and many more like making incision to flush kidney stones with amazingaccuracy. Many robots also let the surgeon doctor to take control of control surfacesand this aids in minimizing errors caused by a shaking hand a human doctor mayhave [24].

1.3.3 Warehouse Operator

Robots are essential workers in warehouses. They help to handle parcel items inautomated way to pick up the items, stamp them with bar-code stickers and sortingthem according to size and destination. They can also read information from parcelsand register movement of parcel boxes in the central repository which let a userknow exact status of parcel movement. Here they most times need to work alongsidehumans and under human monitoring. They also move items across the shop floor toa different assembly line [33].

7



1.3.4 Food Home Delivery

Very recently some tech giants are experimenting with idea of delivering pizza to home.For this drones are used which supposedly fly to an address and safely drop the pizzaat a safe location for the customer to pickup. This is already done in practice in somecities. The drone used is also a type of robot which is governed by many technologieslike GPS signals, radar proximity sensors and camera to deliver pizza without causingany harm to people around [23].

1.3.5 Automotive Industry

Robots are used in automobile manufacturing assembly lines to produce high qualityautomobiles. They can minimize errors when compared to using a human workingstyle and give high quality finished products that has high error possibility whenmanufactured by a human. Many global automobile brands are known for theirhigh quality cars all over the world and they use robots to manage the process ofmanufacturing. Robots pickup parts, move them to appropriate locations, weld orassemble them as per need, and then let a human work alongside to do some thingslike monitoring or operations like critical assembly [4].

1.4 Importance Of Robots In Today’s Time

Robots in today’s time offer some very specific and important benefits which cannotbe ignored or replaced. It include safety, precision of work, quick delivery of productto market, accuracy in repetitive tasks without human like excuses and many more.
Robots are ideal for uses in high risk area like volcanic explorations, space probes,deep ocean operations and in bomb diffusion squads. In these situations they performextraordinarily well. They are stable workers without boredom, cannot get tired, don’tcompromise on safety and don’t make excuses for under performance. They worktirelessly and ensure accuracy, precision and quality of work in any situation. Onceprogrammed and up and running they can work a long time without supervision andwhile maintaining standards of their work under all situation.
Robots are used to look for debris in ocean floor from the wreckage of a sunkenship or crashed air-crafts. There may be an deep ocean surface study exploration ora study on largely unknown aquatic life which can only be performed using robots.Robots are imperative to do such operations.
In cases of metal and mineral exploration and study on ocean floors, robots aremachines that cannot be replaced and thus are credited with numerous discoveries.They can move control surfaces and transmit images of seafloor and let humans takecontrol of situation on ocean floor from several miles distance on ocean top. Thepressure present at ocean floor can only be tolerated by a submarine and sendinga human in deep depths is not possible. Similarly robots are used in space probesand space missions where they do operations humans are not capable of doing likeexposing themselves to work in open space where harsh UV sunlight can cause badeffects on human body and any exposure of human beings there is only limited forcritical operations to minimize risks and high costs associated to cover the risks. Theyprovide safety to humans and make work easier and faster along with giving reliability

8



and required precision [35] [43] [17].
Robots are used around volcanoes erupting molten lava to collect samples andstudy materials and these areas have very high temperatures. These are tasks thatare impossible and too hazardous to be done by humans thus making robot a toolthat cannot be replaced.
Employing robots is cheap and needs only power which is also highly optimized.Robots have a one time costs and low power consumption which make them cheaperto employ in most cases than humans. They are also very reliable nowadays thusoffering very low maintenance and great value for money.
Robots are intelligent. They are programmed to make their own decisions and knowhow to tackle almost all situations. They have a learning mode where they can betaught instantaneously some tasks that they can mimic, but this is usually limited forresearch purposes in university setting.

1.5 Expectations From Robots

There are few basic expectation that a Robot must in all cases adhere to and theyare called as Laws of Robotics which define these three expectations:described asAsimov’s Laws of Robotics. They are described as follows :
– A robot must not in any case cause a minor or hazardous injury to a human beingor allow the injury of a human being due to inactivity.
– A robot under any and all circumstance must obey the orders which are given byhumans except of those that conflict with the First Law stated above.
– A robot must protect its existence unless in a situation in conflicts with the First orSecond Law stated above [39].

1.6 Evolution - Robots to Cobots

Most use cases defined in the above sections have the need for a robot to workalongside a human. This is a necessary step in the evolution of robots and as per today’sneed for robotic performance. The next step in robot evolution is the introduction ofthe term "cobot". Cobots are nothing but robots but the ones those are made to workalongside robots. This has become a need for most robot use cases these days asthe present and future of robots is to work together with humans. Cobots have manyfeatures of safety built into them which enables them to operate alongside humanswithout causing any injury to humans. The features range from object and obstacledetection to a complete stop when in close proximity to a human [12].

9



2 INSPIRATION AND DRIVING
FORCE

The topic of this thesis is about design and implementation of a model based archi-tecture for cobotic cells. With the advent of tactile internet, regularizing coexistenceof robots and humans has become imperative, meaning the so called "cobots", needa new use case architecture for its unit cell to operate safely alongside humans andreal world objects and obstacles. This architecture is based on multiple models eachdescribing one aspect of use case aiding in functionality of cobots. For this the thesisdescribed three models namely world model, application model and safety modelwhich are described using different notations.
The world model is a global model describing the cobot and other things in itsenvironment, giving "on the whole" information about the components in real world acobot has, this includes one or more humans who can be moving in and out of coboticworld zone, then some obstacles and grasp object which can be a ball or cube.
The application model describes the flow of individual actions of grasping that canbe performed by cobot according to a motion trajectory to accomplish the given task.This model is all about performing the task and action of the cobot. Lastly, the safetymodel shows how a cobot achieves the goal of not causing any harm to humans orother objects in its proximity and how to respond to them by moving around themappropriately in cases imminent collisions are detected.
The real life problem scenario can be described as follows. Robot is expected toperform some job and to make it to do that with safety i.e. detect and evade obstacles/ humans, this safety and application can be achieved in two different step cases. Themodels designed and described ,address to this task or problem of first, to train therobot for performing actions according to a preconceived plan using inbuilt “teaching”feature of robot and then doing it safely in real world conditions.
The use case can be understood by seeing a scenario where we can train the robotin a laboratory / ideal conditions and give a working functionality to it by giving adesign which shows how to perform a task which robot can use to work accordinglyand this is known as application model implementation. This robot has a teachingmode where we can set a series of poses and grasp actions manually which cantrain the robot to perform a task according to a plan and this can be done repetitively

10



by the robot later in scenario 2 which is real world and has added conditions of realism.
For this ,complex condition are added to application model about how to respondwhen it detects a human in proximity and obstacles in trajectory paths and in additionthis real world simulation adds real world conditions like adding torque to joints as isin real world to see if arm can for example really life an object.
In scenario one the architecture of robot‘s world model is already known and hasthus been used ,its teaching capability to train it to move to a coordinate position andthen start a trajectory for instance at position X to move a position close to an objectthat is needed to be say picked up and then it can use its gripper to pickup the objectand again move arm to another desired location where it want to drop the object andthere it releases the gripper to put that object down and thus completing the task atposition Y. This is part of application model as described before.
This is smaller use case replication of saying a robot actually moved but here theidea is restricted to only moving arm which is the same when it comes to functionalityachieved by robot moving itself vs moving its arm as previously mentioned, and thisis fulfilling the same work of detecting things in proximity and achieving the tasks bycompleting trajectory as well as at same time to do it safely by responding appropriatelyas per intended use case programmed for safety.
So far above description talks about training the robot in scenario 1 and now an-other scenario is considered which is a real world task where the robot is made toperform the same work it was trained in Scenario 1 but in real life and this means thesafety aspect should now be built into the scenario and for this a safety architectureis constructed which is used by robot, by telling it how to respond when seeing anobstacle like a cube or box for example or a human being.
This sets the tone for the work for this thesis.

11



3 BACKGROUND

3.1 About Franka Emika Panda Robot

Franka Emika GmbH, a technologically sound company from Munich, Germany, hascome ahead to address to this issue of high costs and to provide a solution by intro-ducing an affordable and cheap robot known as robot Panda. This is a sensitive andmultifaceted machine made available to research communities in universities and forstudents to learn and experiment with robots. Robot Panda is a part of structuralecosystem of new age robots which are cheap to buy, program and function and aredeveloped with the main objective as a research robotic machine made available tofiddle and learn by students in universities. Its second objective is to introduce itspresence as a co-worker in a factory who work along humans in a hybrid mode modeland then thirdly as an friend and helping assistant in life for lonely seniors and sickpeople needing basic help and assistance [14].
There are various interfaces and tutorial series made available for robot Frankawhich help to manipulate it. In addition there is an ecosystem of repositories usedto run and manipulate the robot. Nowadays even smartphone apps are developedto give idea of robotics to students. The robot is made with many features, notablebeing a learning capability, where in there is a learning mode which enables robot tolearn a series of poses and grasp actions which can then be run and replicated. Thisis a feature used as a research subject. In addition there are many tools used to runthe Franka ecosystem like Moveit / Rviz i.e. used for motion planning and the robotalso uses Gazebo simulator. The robot Panda relies upon the Robot Operating Systemas the underlying operating system which is used to run it in background. The toolswhich are used to manipulate robot Panda like MoveIT / Rviz only use ROS to connectto the robot and command and control it.
Robot Panda is a very sensitive machine and this give it immense capability to dotasks few other machines can do. It has torque sensing framework which can helpmanipulate the arm very precisely. Robot Panda is also a very safe robot machineand there are many safety features built inside it, like stop button that can be used toshut down the robot. There is as well a research community and many forums whichcan help educate and guide students and researchers working in the field of robotics.This as well help people to share knowledge and development with each other anddevelop more functionality allowing a greater experimentation with this machine.

12



Figure 3.1 Robot Franka Emika Panda Image Source - Footnote 2
There are many more robots developed but this thesis describes only about therobot Franka Emika Panda. Here is what robot Panda looks like.
1

3.2 Robotics - Features

Robots are characterized by a common set of features. Few general features of robotsare -
3.2.1 Sensitivity

Robots in today’s time are characterized by an essential property of sensitivity and thismakes up the idea of cobots. Robots inherently most times may not have this property,but not having this property limits their usage. In today’s day and age traditional robotsare obsolete as they were not sensitive enough to presence of a human which limitedthem as machines that were not suitable to work alongside humans. Present daybelongs to cobots which have the feature of sensitivity built in. This ranges from usingsoft material for physical construction of robot and this is in case if cobot hits a human,the soft body and surface can limit the damage to a human being. Then there are builtin features in cobots that enable them to be sensitive for its surroundings. This wouldmean it must sense its surrounding using host of onboard sensors to detect objectsof different types and only act accordingly. A robot use a range of different sensorslike light sensors in camera, pressure sensors in arms, chemical sensors to detect andmeasure for instance air quality, listening sensors to adjust speaking volume, radarfor scanning surroundings in 3D for precision mappings, and many more as per the
12. https://robots-blog.com/2016/05/10/franka-emika-everybodys-robot/

13



need of the job or features to be integrated. Other features include using a slowmotion mode when a human is detected in proximity to an emergency stop featureonce a close obstacle is detected. Some of sensitivity features are part of materialshandling [26].
Robot Franka Emika Panda is having an arm which is made up of seven joints andall have torque sensors giving robot Panda great sensitivity. This allows robot Pandato detect any kind of forces acting on its arm upto the level that it can measure themand detect exact spots where and on which joint, how much torque is applied.

3.2.2 Drive a.k.a Motion

The main characteristic of any robot is movement. A robot should be able to moveitself around and this also means it should be able to move parts like an arm whichenables it to perform the tasks. We can call the arm and other moving parts of cobotslike a gripper as control surfaces. The motion is characterized as essential property ofa cobot as it enables it to accomplish a task. Motion is almost always using remotecontrol or by moving on pre-programmed paths.
If a robot arm cannot move it is not able to accomplish a task or if it cannot moveitself in a continuous motion then it is not capable to be considered as a researchinterest. There are various technologies that are used to drive the robots and itscontrol surfaces like using electronics and hydraulic systems [1]

3.2.3 Impedance

Essential property of a cobot is the built in quality of physical resistance and abilityto electronically measure it. It is this property of robot which enables the roboticcomponents to electronically alter its control surfaces inside a range so that it canhave a level of tolerance on control surfaces when depressed and when relaxed phys-ically. This uses electric resistance on surfaces to detect forces on control surfacewhich let the robot know its surface have come in contact with an obstacle or itemand also measure electronically how much force is applied to it. This property hasbeen developed to even measure how much of a control surface is depressed as itmeasures the movement of spring or a foam material in side the surface which maybe used as appropriate material to buffer the surface. This maybe simply explained asan operation of a mechanical spring. This capability gives a touch of gentleness andawareness when interacting with the objects in environment. This is also similar to thehuman arm which tenses and relaxes the muscles to adapt performing any task likepushing, depending on the load and situation [14].

3.2.4 Collision Detection and Reaction

A robot of present day usually have quality of anticipating collisions built in and thisdone by detecting obstacles and identifying them in its path. This is described ascollision detection and the associated property is of avoidance. So once the path isdetected and an obstacle identified in the path then it must be avoided. This can beachieved by stopping in a safe distance before the actual contact with the obstacle.

14



Another property is of reaction. This can be described as defining robotic reactiononce an obstacle is detected in the path. This includes trajectory modification andalteration to find a new trajectory which maybe around the obstacle or a completelynew one. Algorithms are used to achieve this property which are very complex innature but appropriately modify the path of the robot.
There is another dimension present as well to identify with property of collisiondetection. The torque sensors present in Panda arm detect torque when then moveagainst an obstacle and once past the defined safe limit, drive the robot to a completeemergency halt [11].

3.3 Software Tools Robot Franka Uses

Robot Panda uses several tools for its functioning. There are general software robotPanda uses which are also used by other machines as well as there are software specif-ically developed for robot Panda. Robot Panda also comes with several software librarypackages which let it run on user machines using Robot Operating Systems as platformalready installed. The software systems robot Franka Emika Panda uses is MoveIT/Rvizfor motion planning. This lets user set various parameters of robot Panda and letsthem tweak some of its features to see how the motion plan executes in theory. ThisMoveIT framework sets tone for robot motion planning activity but the plan visualizedhere is only a hypothetical plan whichmay not be possibly executable in real world [25].
This is where there arises a need for another software to check if the motion plan-ning is possible in real world. For this a common software used is Gazebo simulator.This simulator have additional real world parameters like torque on joint which can bealtered to see how robot reacts for a motion plan in real world [32].There maybe cases where a robot cannot really afford to bear weight to pickup anobject and this maybe visually possible in MoveIT/Rviz tool as it is just a visualizationtool framework but then the same motion plan is run in Gazebo simulator which runsthe plan with defined torque on all joints which can as well be altered to see morereactions on robotic arm and this lets user see if the simulation is really possible inreal world conditions and thus confirm if the motion plan is real world possible.

3.4 Robotic Coexistence With Humans - Meaning Of Cobots

Cobots are evolved version of traditional robots, and traditional robots are only meantto perform without safety features on both levels comprising physical safety as wellas software built detection features giving intelligence to robot. Thus these are thefactors which differentiate a robot from a cobot.
These features are built in cobots but traditional robots do not have them. Coboticsafety relies on lightweight construction materials, curved edges on control surfacesand no sharp edges but only rounded curves, and comes with inherent limitation ofspeed and force when working along human presence [26].
Cobots are built for an industry setting workspace and have different hardwareand software to run them along with above mentioned features of safety. Some ofessential features of cobots are -

15



3.4.1 Existence Alongside Humans

Cobots and humans work with each other in a common area to accomplish a cer-tain task. A traditional robot is not built to perform alongside human but a cobot is [18].

3.4.2 Collaboration and Co-operation

There are two stages of intricacies for cobots working with humans namely Collabora-tion and Co-operation. Humans and cobots are meant to collaborate in work. Thismean they must work in a common space but not on any one task physically together.The other property is co-operation and this is a more refined stage which all cobotsmay not have this feature. This means human and cobot work on the same module ofmachine at the same time in parallel, and both the human and cobot are in motion.This is achieved not only by pre-programming some paths for cobots and humans butalso in real time which is explained in next point.

3.4.3 Real-time and Presence Acknowledged Collaboration

The cobots are meant to work alongside humans safely. The capability of real timemonitoring and decision making is imperative to a cobot. This mean the cobot shouldbe able to detect and track human presence andmotion in real time. A cobot must alsohave decision making ability upto some level to respond to human changing positionthat enable it to stay at a safe distance from human movement. This must also giverobot ability to alter paths in real time for its intended motion.
This is a part of robotics that is not very well developed and this forms basis ofself-driving cars which has not become possible in real world usage but is also evolvingvery fast.

3.5 Accidents Due To Malfunctions and Consequences

Traditional robots were used in industry setting in the past where humans operatedthem and sometimes worked alongside them. But there have been many cases wherethe safety of human is compromised in all areas where robots are present. And thishas also casedmany accidents and some of them very terrible causing grievous injuriesand even deaths in many cases. Even during development of cobots there have beenaccidents for example many prototypes of self-driving cars have failed to provide safetyto other cars and people in proximity on the road. It is safe to acknowledge that this isa big issue with cobots and there are problems present here.
There is always an element of risk in human-cobot interactions. The danger ariseswhen a human may get hit by the robot in motion or robotic arm in motion. A humanmay also get trapped between robot boy or arm and an wall or iron grill in vicinity.There are many types of hazards that are identified and they maybe dangers causedmechanically i.e faults in the machine, electrical shocks to human body, overheatingcomponents causing burns and many more hazards which maybe combination ofthese. The hazards are studied carefully and robots continuously evolved tomake themhandle risks and this makes them safer. But it is also necessary to acknowledge that inreal world there are some faults that can always happen which may not always be due

16



to the robot itself but due to wrong operation of robots or due to abuse [5](Chapter4). Some of them are recognized to be -

3.5.1 Mechanical Failure

Robotic mechanism is made up of components like motors, actuators, connectors andsensors. These can malfunction and may directly or indirectly cause safety issues. Aclassic example is wrong readings sent by sensors to processor causing it to makea wrong decision. This may cause consequent failure of more components or makethem behave unsafely [28].

3.5.2 Electrical Anomaly In Components

Robots are made up of electronic components like wires, circuit boards, micropro-cessors which age and may malfunction causing robot to behave unexpectedly andunsafely. The insulation material may wear out causing short circuits and heat damageto components [28].

3.5.3 Malfunctioning Software

Software is essential to modern day robots and this need programming. Code in anylanguage always have bugs and more so it may fail altogether and this may causerobot to behave unexpectedly and unsafely. The problems come in all shapes andsizes ranging from robot shutting down unexpectedly ,to short circuits causing heatand even fire risks. Thus the set of instructions governing robot use should be perfectfor using use cases they are built for but there are always chances of issues comingup after long time use. One of them maybe hardware is superficially compatible withsoftware instructions [21].

3.5.4 Human Operator Errors

Robots if used in unintended use cases or experimented with beyond their capabilitycan malfunction. A malfunctioning robot is an uncontrolled robot and thus can be ahuge hazard for human life. There are some veto power humans have over robots to dothings for them in their own way, but this may logically and hence technically contradic-tory leading to very unsafe situations where critical materials are handled for instanceuranium in a nuclear reactor. A classic example is Chernobyl Nuclear Power Plantaccident which was caused entirely due to operator errors [31]. Machines are built withapplying functionality in mind and not to handle a combination of all use cases and thisalways make it possible that there may arise situations robot can go against itself orthe operator. This is usually caused due to untrained engineers, operators, and users.These people may not be aware of effects of their actions causing machine to fault [15].
Robots are continuously incorporated with artificial intelligence features makingthem safer every day but this is a subject of research which is continuously developedand it is not possible to make a robot equally intelligent to a human being.

17



3.6 Making Robots Safer And Safe Deployment Practices

Collaborative robots or cobots are all about latest technology trend that is gatheringpace with the advent of all new technology coming up in various fields like self drivingcars and manufacturing in factory supply chains. The technology is itself developingand so are its components that can be used interchangeably across industries todevelop an ecosystem of new age artificially intelligent cobots at an affordable price.This technology offer amazing advantages as they can safely work alongside humansand provide cost and time benefits that is hard to beat in industry setting where cycletime and productivity are key issues [27].
As was mentioned before that cobotic technology is still evolving and developingand assuming it to come at a level where they behave like a living being may take moredecades of time and the example is self driving cars that many prominent organizationsare working on but have not been able to successfully integrate that finesse and level ofsafety so far. There have been accidents with attempts to integrate artificial intelligencein to cobots and using machine learning to train the cobot with experiences and thenimplement this with assured safety or at least equal to a level of humans decisionpower. This means that companies are spending large amounts of money to developsuch technologies and help them evolve. All because the accidents can be serious andcan cause injuries and loss of human life.
There are causes of accidents using robots at workplace or industry setting. Robotswere made to be fast workers and also powerful to do tedious tasks which means inmost cases the control surfaces have substantial amounts of torque. This can causeinjury to a human with just one strike and there may be various situations that candevelop leading to an accident and thus hazard to human life and also may causefinancial costs and medical attention. There are situations when even non functioningrobots may cause incidents and hazards. Example is when a robot may malfunctionwhen it is being overhauled for maintenance. There may be a worker doing overhaulingwhen it may react irregularly and cause serious hazard to life of worker. Or there canarise a situation when a robot may be faulty suppose due to a motor issue and theworker may have to stand in the path of robot movement and thus if he fiddles withthe motor and it may start running then worker can be hit with robotic arm and causeinjury [40].
The accidents caused by robots can be classified based on the type of dangerous situ-ations a humanmay end up in with the robot. They are described in the following cases.
A human worker maybe crushed with arm motion of the robot or a human may gettrapped in a situation where the robot may move to a point and this is where there isno outlet for human to escape. This case may arise when a human gets trapped inbetween a wall and the robot arm for instance. Other times a robot may directly hita human thus causing collision. There maybe other random safety situations arisingwhen a robot and a human are present together in a common space like heat burnsor electric shocks.
The above listed hazards are minimized by: [20]
– enforcing strictly pre-mapped environment and space for the cell of cobot– strictly followed operational routine

18



– authorization of machine operators, maintenance workers and programmers– speed limitation on movement of control surfaces in presence of human– emergency stop function.

19



4 STATE OF THE ART
This chapter introduces and describes the technology and tools used for modelingand programming in this thesis work and this forms the state of the art for this thesis.In this section, firstly a basic introduction to the technology of task is given and thisis related to what is being tried to be accomplished in real world and then followingsection describing first, the state of the art for theoretical models designed and thentechnology for the programming and related tools are described in the second section.

4.1 Motion Planning And Simulations

This robotics project revolves around the idea of motion planning. It is about designand implementation of a model based architecture for cobotic cells. The basic ideais that there is a robot which has to cohabit with humans and it is an effort to makeit real world intelligent and this means it has to work in real world where obstacles,objects and humans are present. Accidents are imminent and hence the case studyis about building intelligence in robot to deal with obstacles, thus enabling robot toprovide safety for cohabiting humans.
Using motion planning, tasks are accomplished by the robot and safety providedand this is starting step of building theoretical models for motion planning known asapplication model. Similarly world model is designed as a complete visual model forworld of robot as well as safety model is designed as a theoretical model for safetyof robotic system. All these are also programmed and described more objectively inlater chapters. But for now only tools and technologies used to design and programthem are described in the following two sections respectively. Firstly, models andtheir need is introduced and then techniques used for visual depiction of models isdescribed. Here a few of the optional depictions are talked and described and then theone selected for this thesis is described for each of the models. Secondly, technologyused for running the program made, i.e. to implement these models is described [16].

4.2 Modeling - Explaining Choice of Design Depictions

This thesis uses the concept of designing architectural framework for human androbot cohabitation. For this model based cobotic cell design is used. Thesis work triesto find correct diagram depictions for all three intended diagrams which are world

20



model, application model and lastly safety model. For this the concept of model needto be explained and also then why we need models and the various types of modelsalong with the chosen models for all the three concepts of application model, worldmodel and safety model.
A model can be described as an abstraction of real world or a system, focusing onsome specific structural and behavioral properties, which are then expressed in asyntactical and semantically defined language representation [8]. There are varioustypes of models which use different levels of abstraction. Using right level of abstrac-tion is critical and it usually defines the granularity of the model and the complexityit expresses. There are usually always some details that are abstracted and somehighlighted. There are various techniques of model construction types and some ofthem are object oriented models, process based models and hybrid models. Thesemodels thus help to visualize the structure of a system and hence make them anessential tool. A brief description about the types of models follows.
Object oriented models have developed as a modeling paradigm, after being actingas programming paradigm. Most basic example is UML diagrams. The second typeis process based models, they are more formal diagrams which are used to expressdomain specific and custom properties. Example is petri-nets and bigraphs. Thethird type of model is hybrid models. Some properties of safety cannot be sufficientlydescribed as discreet models but as continuous dynamic models. Thus this model com-bines dynamic, discrete and continuous modeling languages. Example is hybrid-petrinets. Various design depictions were considered and after contemplation followingdepictions were selected.

4.2.1 Unified Modeling Language (UML) Diagram For World Model Class
Diagram

This thesis work includes extensive research on the UML Class Diagram and its featuresand how they can be used. Then a few of tools used to construct UML Class diagramsare described.
Unified Model is a language used to appropriately formalize the static structure ofa project using classes as building blocks. This modeling is most basic depiction ofobject oriented modeling and data modeling. UML class diagram describes classes,attributes they have and functions used to implement them, and show how the objectsof these classes are related. This model cohesively describes the data contained in aproject and how it all is related together to produce desired functionality [13] [19].
The class in this diagram is the basic unit. The class is an almost exact depictionof real object oriented class and contains three sections, first being the class name,second is the section for attributes i.e. data variables and their type held by the classand third section describe the operation, thus holding the methods. The UML classdiagram can be extended using state machines which is described a few sections laterto describe another model known as safety model and i.e. it is based on extension ofUML class diagram. Here is depiction of a typical class in a class diagram in Fig.4.1.
There are various types of relation that connect classes together and their usagedepends on complexity of the project. Each type of relation is described by a unique

21



Figure 4.1 A typical class structure in UML class diagram ImageSource:https://sites.google.com/site/revasolution/techhome/uml/clsdiag

Figure 4.2 UML Relations Image Source :https :// en.wikipedia.org/wiki / File :Uml_classes_en.svg
symbol of connection. Few of the relations are dependency, association, aggregation,inheritance and composition as shown in the Fig 4.2 and described in sections later.

(A) Dependency
The dependency relation is marked by a dotted arrow. This implies a one-wayrelationship between two variable. It means that one variable is dependent onthe other. If value of one variable in server changes then the value of variabledependent on it also changes on client.

(B) Association
An Association means a family of links. This is marked by a bold line arrow. Itmeans a static relationship shared between objects of two classes and this re-lates the classes belonging to a family. Any number of classes can be related byassociation relation.

(C) Inheritance
Inheritance is another relationship. This is a property where in all characteristicsi.e. variables and functions, of a class are adopted by another class as well andthey are known to be related by inheritance. The class adopting the propertiesis called as the child class and the class from which it adopts them is known asparent class. This is very commonly used relationship in class diagrams. This ismarked by a bold line arrow with hollow tip.

22



Figure 4.3 Example of UML Class Diagram Image Source :https :// www.researchgate.net/figure/Example−of−a−UML−Class−Diagram_fig1_221269289
(D) Aggregation

Aggregation is one of more refined version of association relationship. Herefunctionality of one class is dependent on another one, i.e. if one variable do notexist then another variable having aggregation relationship is also not able toexist or be used. It is depicted by a line and tip having a quadrilateral.

Here is an example of a typical UML class diagram displayed in Fig. 4.3.Tools used for UML class diagrams is Online Visual Paradigm. This is an online editorto construct UML class diagrams.
4.2.2 Business Process Modeling Notation (BPMN) for Application

Model

Business Process Modeling Notation is used for Application Model [38]. This is a designdepiction used to construct application workflows and processes. BPMN providesa standardized bridge for the gap between the business process design and imple-mentation. A Business Process Model is a network of graphical objects, which areactivities(i.e. work) and the flow controls that define their order of performance and theflow. This diagram is made up of elements and there are many category of elementsbut the thesis work uses two major group of elements known as flow objects andconnecting objects. Here in Fig 4.4 is displayed an example of BPMN.
The flow objects contain Events, Activities and Gateways and the connecting objectshave Sequence Flows, Message Flows and Association. They all come together to givedesired form to the process workflows. Here in Fig.4.5 is image of all components ofBPMN.
A short description of all components is as follows.

23



Figure 4.4 Components of BPMN Image Source:https://study.com/academy/lesson/business-process-model-and-notation-process-examples.html

Figure 4.5 BPMN Example Image Source :https://www.conceptdraw.com/examples/taxi-booking-process

24



(A) Events
An event is depicted as a circle. This is something that marks something hap-pening during the course of workflow. They affect flow of the process and havea trigger point or an result state. There are three types of events, and each ofthem show stage of the event happening and also effect the flow. These arestart, intermediate and end events as is marked in the Fig 4.5.

(B) Activity
Activity is depicted by a rounded-corner rectangle. It marks work that is per-formed. There are many types of activities but the main are Sub-processes andtasks as shown in Fig 4.5.

(C) Gateways
A Gateway is shown by diamond shape and is used to direct the divergence andconvergence of the work flow sequence. It governs traditional decisions, as wellas the decision when to split, merge, and join paths.
Here is description of Connecting objects also known as connectors. They areconnected together to create structure and demonstrate flow. Three connectorsare described below.

(D) Sequence Flow
A Sequence Flow is shown by a solid line with a solid arrowhead and this showsthe order of the activities that will be performed in the workflow process.

(E) Message Flow
A Message Flow is depicted by a dashed line with an open arrowhead and it isused to mark message transfer between two different processes. Depicted inthe image.

(F) Association
An Association is used as a dotted line with a line arrowhead and it is used toassociate data, text, or miscellaneous artifacts with flow objects. They are usedto show the inputs and outputs of activities.
All these components come together to let users create a precise, detailed anddesired form of expression using BPMN.

4.2.3 Unified Modeling Language State Machine for Safety Model

UML state machines are finite state machines expressed in the form of unified model-ing language notation. The concept associated is about organizing the way a processworks, such that an entity or each of its sub-entities is always in exactly one of a num-ber of possible states and there is well-defined conditional transitions between thesestates.
Today almost all software system are event driven. These systems can be externalor internal events like a mouse click event. After the event is handled, the systemgoes back to waiting for another event. This describes the concept of finite statemachines. The system can be in only one state at any given time instant. The systemwhen changing state is known as state transition. When finite state machines areexpressed in the form of UML diagrams then they are known as UML state machines.They use same components as are used in UML class diagrams.

25



Figure 4.6 UML State Machine Image Source : https://www.visual-paradigm.com/tutorials/how-to-draw-state-machine-diagram-in-uml/

4.3 Tools Used

4.3.1 Setup Environment Using ROS To Run Services, Motion Planning
In MOVEIT and GAZEBO For Simulations and more

(A) ROS 1

ROS is an opensource robot operating system. ROS is not a regular OS, in thesense it does not provide regular functions of OS like process management andscheduling but it provides a different set of services and acts like structuredcommunications layer above the host operating systems. ROS is associated withexisting frameworks of robots, with brief look on available application softwarewhich uses ROS. As robotics is a wide field and continuously a topic of researchand a growing one, generating code for ROS is not easy. There are differentcategory of robots available with high degree of variation in hardware, thus notenabling programmers to reuse code or develop on modules. In addition thetotal amount of code needed is too much for regular programmers, as it needs adeep stack starting from driver-level software and continuing up, and also needsabstract reasoning, and more. The required breadth and width of expertiseneeded is far more than the skills of any single researcher and robotics softwarearchitectures must also be able to be integrated with large-scale software. Toaddress to these problems and make life easier for a regular programmer, manyrobotics researchers, have constructed huge number of frameworks to handlecomplexity and address to rapid prototyping of software for experiments, thusresulting enabling research in industry and academia. Each of the frameworkswere made keeping in mind a purpose, maybe for a response to perceivedweakness of other available frameworks, or to place importance on dimensionswhich were seen as most important in the design process. ROS, the framework isdesigned not without trade-offs and prioritizations made during its design cyclewhich were essential to do in interest of practical uses. It is still thought the trade-offs will serve well to purposes of large-scale integrative robotics research ina wide variety of uses and cases as robotic systems grow ever more complex [30].
1https://moveit.ros.org

26



Figure 4.7 MoveIT / RVIZ Screenshot
(B) MoveIT 2

MoveIT motion planner was used for motion planning as this software lets usersalter many different parameters of the robotic components and helps to createcase studies in a world environment for robot Panda. Here a series of joints andposes is set and then a trajectory for motion planning, which is then used to runin a real world simulator. Its main purpose is to motion plan and introduce anobstacle which is a cube box or which can be a human being and the motion planis about moving the robot arm around the obstacle to reach a position whichwas decided earlier in the motion plan [25]. There can be as well other motionplans that are simpler and more complex
This is motion planner used to plan the motion of robot Franka Panda in thiscase. This connects to simulator for running real world simulations using theRobot Operating System (ROS) and launch file. Here is screenshot for Rviz.
When MoveIT tool is started for the first time there comes up an empty world.On the top there is option Panel which can be clicked to see a drop down menuand from there some of the panels can be selected which need to be used. Themotion planning enables user to set various field parameters and their values,like some of them are Fixed Frame, Robot Description, Planning Scene Topic,Planning Group and Planning Request and more like Planning Trajectory andthey can be explored further using online tutorials provided by ROS, thus addingto a lot of functionality and flexibility3.
Fig.4.7 This is what Rviz motion planner looks like. The robot is stationary in thiscase and can be moved using arrows displayed in different colors to attempt mo-tion in different directions. The 7 joint of robot Panda give it immense flexibilitybut there maybe some motions which are not possible and in this case it is made

2https://moveit.ros.org/3https :// ros−planning.github.io/moveit_tutorials/doc/ quickstart_in_rviz / quickstart_in_rviz_tutorial .html

27



Figure 4.8 Gazebo Screenshot
obvious while using MoveIT. The Displays on the top left shown are showingvarious different parameters which Rviz can help tune and change. Some ofthem are Robot Description and Planning Scene Topic and there is Plan andExecute button which can be used to run the plan once the arm is moved toa new position termed as final position. The plan can be executed in Gazebosimulator by clicking Plan and Execute button and the trajectory is visible in theRviz and then almost immidiately the Gazebo simulator executes the motion.

(C) Gazebo 4
Gazebo simulator was used which is a simulator to run the motion plan fromMoveIT. This lets users see if the real life simulation is possible for the conceivedmotion plan and trajectory visualized in a visualization tool like MoveIT. Gazeboalso has additional features which can add and alter real time parameters to itssimulation like altering torque of joints to see how robot reacts in varying realworld conditions [32].
This is a simulator which simulates robot motion with real world parameterstuned to check if the motion plan is executable and feasible in real world. Hereis how the Gazebo simulator looks on screen.
In this thesis work there was no need to explore functionality or fiddle any offeatures in Gazebo. It was used to visualize motion plan of MoveIt and to check ifthis is real world feasible in Gazebo. In this tool it is possible to tune a lot of realworld parameters and the ones related to robot Panda are torques on joints butthis was not required.

(D) Clion IDE 5
4http://gazebosim.org/5https://www.jetbrains.com/clion/

28



Figure 4.9 CLion Screenshot
This is the editor used to write C++ code for the tasks in this project and thisis IDE used to compile and run it. CLion is used to provide many aides to helpreduce the programmers workload and automate the process of adding codeby providing many suggestions using inbuilt libraries and showing connectionsamong variables. In addition it points out logic errors in advance and helpsmitigate errors and warnings that may come at a later stage by improving thequality of code while still in construction process. CLion IDE can be started byopening a terminal in linux and typing command "clion". The Fig 4.9 shows howCLion IDE looks like.
CLion window shows the complete project structure on one side and eachopened program on right side under tabs, making it easier to understand thecode and make things easy to lookup. The window in second half of screen is theconsole output window. It shows the errors and command line output. Theseare some of useful general features of Clion IDE in addition to many more used.

(E) Gitlab 6
To keep the constructed code safe from loss and to keep it accessible and visibleas a package to administrators and a host of users, the code is uploaded to acentral repository for which Gitlab was used. This is a widely used repository forstudents in a university setting.
It shows the projects available under the namespace of account owner and hasa range of features and commands used, which are described in the followingparagraphs. The Fig. 4.10 shows how a typical Gitlab account appears in web.
After logging in to Gitlab account with credentials of username and password, theusers are welcomed to a page which shows repositories available. The groupsand repositories subscribed by the owner user or given access to owner user byother users are demonstrated here at the page. The top section has tabs "All"

6https://gitlab.com/explore

29



Figure 4.10 Gitlab Screenshot
and "Personal". "All" signify all projects which owner user has access to and the"Personal" tab has repositories forked by the owner user only. The owner usercan give access to other users for their repositories too.
Gitlab is a tool that allows user to create a fork from a parent repository andbe able to use it as a personal repository. In cases when the personal fork hasbecome corrupt or cannot be used anymore, it can be re-forked from parentrepository. Gitlab also allows construction of more than one branch of theforked repository to solve this problem, so in cases when the master branch ofrepository is not usable anymore, a new branch can be created and updatedwith. This is also useful to maintain different versions of the code and this is oneof many features of Gitlab this thesis used. Forking can be done by clicking on theparent repository and then clicking on Blue tab marked as "Clone". Then appearstwo options "Clone with HTTPS" and "Clone with SSH", one of link is which needsto be copied. The command "git clone" can be then used on terminal, appendedwith the copied link from Clone tab to fork the repository to local machine.
After forking from a parent repository, work is done and added to the foldersforked from repository and used on local machine. But they need to be uploadedto Gitlab at regular intervals to log the progress and keep it safe from loss on localmachine. For this, the folder is to be uploaded or pushed from local machine tothe Gitlab account for which commands have to be used from terminal of localmachine. A short description of commands used to achieve this are stated below.
Many commands used are general git commands which mostly include "gitstatus", "git add .", "git commit", "git fetch", "git pull" and "git push".
First of all to use git upload in the project, user must go to the project´s parentdirectory in linux and right click to click on "Open In Terminal" option to opena terminal which is already in parent directory of project workspace. Or else, aterminal can be opened and "cd" command can be used, suffixed by the pathto parent directory of workspace after a space. This "cd" command can also berun in steps and this changes current directory to stated, suffixed directory at

30



each step. Using this in steps, users can switch to the directory that need to bepushed in project.
Second step after switching to the directory to be pushed, is to see its status ongit and this can be done using command "git status". This command shows whatare the changes since last commit or what is changed and new.
Then command must be run to add all changes to git and this is done usingcommand "git add .". This adds all changes and new files to git to be used asdesired. Then ideally once again status should be checked to see if the filesadded are now shown in green color after adding them to git. This can be doneusing "git status" command once again. All files must now appear in green andthis shows they were added to git since last add command. This step alternativelycan be skipped.
Then changes added must be committed and this can be done using command"git commit -m "xx"". The xx is a commit message and this text is used as amarkup. Any text can be used here instead of xx. This command commitschanges to git. Then "git fetch" command can be used to see which is the branchfetched. This is to confirm if the commit is on correct branch.
After this command, command "git pull" can be used to see if there are stillchanges between local git version and what is in online repositories version.After this once again status must be checked. If there is nothing to add, then allis well but we can once again use git "add ." command to see if anything morecan be added. At this point "meld" tool can be used to match the changes in filei.e. if there are any, between online git and commit but this may not be neededfor regular uses and only in cases when there are any discrepancy differencesdue to irregularities between pushes. Then "git push" must be used to push allchanges to Gitlab. This prompts for user to enter username and password andafter this stage all changes are pushed to Gitlab account folder. Thus this showsa completed git command line push process.

(F) Erdal’s Repositories 7
There are few startup repositories provided by Erdal to use by including as pack-age in workspace and they are essential to run robot Franka Emika Panda usingROS on local machine. The robotic framework package has libfranka and this is aC++ program library, frankaros which is a ROS interface with ROS Control andMoveIt integration. The links above contain all repositories that can be used forrobot Panda including the ones that has been used by work of this theses.

7https://github.com/frankaemika/ , https://erdalpekel.de/?p=55

31



5 CONCEPT

5.1 Theme

This section defines all the concepts associated, discovered and learned with thework of this thesis. The main idea begins as described as a real world with a robotpresent.The real world consist of robot Franka Emika Panda present. The robot hasan arm having seven joints. There can be one or more humans present in proximity,along with one or more obstacles which are also present in the proximity in real world.The base of robot is fixed and the arm is capable of motion and there is a gripper atthe tip of arm, which need to pickup and then release an object to complete a job. Therobot has to be programmed to move and not just move the arm but do this safelyi.e. by detecting obstacles / humans around the robot continuously and respondingappropriately, by evading the obstacles to reach final position and thus complete thepickup and release job. There can be other jobs like piercing a balloon ball as depictedin the Fig 5.1.This section starts with a hypothetical situation to explain the need for modelsand the concepts associated with implementation. The robot uses a motion plannersoftware to follow a preconceived plan which is visualized and that is to move armand pickup an object and then move arm again according to already planned motiontrajectory and release the object at a desired location thus completing the task. Imagedescribes this as shown in Fig 5.1. So far this plan is only about doing the task, butsans the idea of any kind of obstacle or human which can cause a hindrance to alreadyplanned motion.
The activity until this point can be used to train the robot and this motion trajectoryjob can be re-executed by the robot using the inbuilt teaching capability feature ofrobot which lets the robot learn a series of pose and actions and replicate the sametrajectory and grasp actions, but then a real world feature is added to robot and thisis about adding essential safety feature. This safety is achieved by altering the plannedtrajectory right at that time instant when sensors detect obstacle in the path of robot.At this time, robot uses a new trajectory to move its arm around the obstacle, to reacha coordinate position around the obstacle to a point in pre-decided and followedmotion trajectory and then continue regular motion from there on-wards to completethe motion and task. After the motion planning part a simulation software is used tosee if motion trajectory correction is feasible and working in real life or not and to seehow successful it can be [7] (Chapter1,Chapter4).

32



Figure 5.1 Robot Panda Picking Up Object Image Source :https://blog.generationrobots.com/en/list-of-criteria-to-look-at-before-buying-a-robot-arm/panda-franka-emika-care-robot-arm-2/
This is a model where human / object - robot interaction operation is depicted, asshown in Fig 5.2.

5.2 The Models Designed

Tasks in thesis work are to design three models namely world model, application modeland safety model using modeling tools and implement them in a C++ program. Thissections begins with describing each of these three models.
(A) WORLD MODEL USING UML

The world model describes the world of robot Panda in general i.e. about what isinside the surroundings of the robot apart from the robot itself and then featuresand attributes of all components in this world model. In technical terms this isthe world of the robot that exists in real world and components in this real worldare the robot FEP itself with its arm, the obstacle like a human or an object anda cube or ball which can act as an object, that can be picked up by the robotarm. Fig. 5.3 and 5.4 shows the designed World Model class and object diagramrespectively. These were designed using UML diagrams.
Unified Modeling Language (UML) class and object diagrams were constructedfor world model using the web tool named Online Visual Paradigm. The UMLclass model is used to derive the objects and depict in the UML object modeldiagram [2].

33



Figure 5.2 Another Image of Robot Franka Emika Panda Image Source : Panda SkillsSensitivity Video Screenshot

Figure 5.3World Model UML Class Diagram

Figure 5.4World Model UML Object Diagram

34



This world model class diagram has been designed to contain ten classes. Themain parent classes are World Object and World, present on top most level. Theclasses Robot and Abstract Object inherit from one class and at same time areaggregated with another class. Relation of association and aggregation, is usedwhere classes need to use data variable from other classes and in cases if classvariable must depend on other class variables for it to exist, respectively.
Specifically this means, aggregation relation is used in a case where if the class isnot involved or used, its child classes and their variables cannot be instantiatedor used. Association relation is used where one class is related to another justto be able to use the other’s variables. Both relations use pointers in programimplementation in C++.

(B) APPLICATION MODEL – BUSINESS PROCESS MODELING NOTATION USING MOD-ELIO
Business Process Modeling Notation(BPMN) for application model using Modeliotool1, was chosen for application model. The designed application model isdepicted in Figure 5.5 [38].
BPM notation was deemed to be a correct choice to show application processworkflows as this shows segregated cells, called frames for all the entities presentand this depicts each component of the world model diagram. The notationthen allows to depict the relationship and connections between the logical com-ponents of the frames and shows their flow which have a comprehensive andlogical consistency among cells. This is achieved using features of BPMN likeactivity, gateways and events which form as logical components. It uses startand end event states to mark positions for start and end and then “if” conditionsare used as flow lines with process events and intermediate events to constructapplication model.

(C) SAFETY MODEL DEPICTION USING UML STATE MACHINE
UML State Machines are used to construct safety model. They are an extendedversion of UML finite state machine. The Fig 5.6 shows the safety model con-structed using the tool Modelio.
The start and end events denote, the process starting and end states. The statemachine can, at any point in time be only present in one state. The robot mo-tion begins at point of start event. The transition T1 is about human presenceand activity of human presence is marked, assuming there is already a humanpresent detected in the proximity. The robot motion had started but now MoveITis requested to provide a new motion plan around the human obstacle, thisis marked by transition T3 and once a new trajectory is obtained the motionstarts continuation around the human and once again robot reaches a pointin original motion plan and then it keeps checking for human presence andthis is marked using if condition "Detect Human", and if detected by sensorsduring the continuing motion plan. If the human is detected then once again newMoveIT trajectory is requested around the human and the loops keeps running

1https://www.modelio.org/

35



Figure 5.5 BPMN Application Model Diagram

Figure 5.6 Safety Model - UML State Diagram

36



to check for human presence until a state is reached where human is absentand arm moved to a position around the obstacle at a point where it can beginoriginal motion plan. Once at this point, human absent state is achieved theoriginal motion is proceeded to be completed and marked by final transition T2proceeding to the end event finally.
This model can be extended in more detail in the future using this concept alongwith a different notation that can make the cases more detailed and thus moreextensive. MAPE-K loops can also be used to denote the safety of a system andin addition computer generated graphics can as well be used to depict the safetymodel of a system, this enables the research to not get restricted to just BPMNnotation for safety models of a system [38].
There has been extensive work done to incorporate safety into real world robotsparticularly from Sami Haddadin. The work has built the robot with improvedtechnology and making the robot understanding safety i.e by making them softerin operation when operating, to prevent any physical collisions by embeddinginjury knowledge into controls like emergency stop. These efforts also result inusing reduced force when in human proximity and other efforts are to makerobot surfaces softer and for this extensive testing has been done on injuringpig skin to study effects of injuries that can be caused by robots [37].

5.3 Programming Of Hardware And Software Components -
Purpose And Concepts

In hardware, there exists the Franka robot which has an arm and the arm has jointsdescribed by J1...J7 . We also then have other objects in the world namely obstacles,which can be one or more human and then non living ones like a cube ,box or ball. Inaddition there are grasp objects which can be a cube or an item to pick.
The robot Panda has motion planning attributes which can be altered. Most of themare in MoveIT which is the motion planner tool described in detail in the last chapter.The state of robot arm is described by the coordinate position of last joint of the armi.e. J7. We can as well alter the many other parameters like torque on the arm insimulations. The Figure 5.7 shows the robot panda with joints .
In the Software section ROS [30] 2 is used which is the Robot Operating System andcatkin builds the workspace. ROS is started using "roscore" command in terminal andthis starts the ROS on local machine. MoveIT is then used to domotion planning for therobot and planning motion around the obstacles. The plan in MoveIT is then run in asimulator for which Gazebo Simulator was used, which is used to replicate real life con-ditions and run robot inside it. This gives an idea if the robot can perform as plannedand expected in real life with torque on joints or other real world like conditions. Touse MoveIT, workspace is built using catkin. Erdal´s repos are used and essentialin the workspace which are franka_ros , panda_moveit_config and panda_simulation,and they are imperative to build the workspace which contains the node programdesigned. These are the repositories used to build the package and thus run the

2https://www.ros.org/

37



Figure 5.7 Robot Panda Joints Image Source : https://www.chegg.com/homework-help/questions-and-answers/panda-franka-emika-shown-belowis-innovative-lightweight-robot-intended-friendly-andsafe-hu-q35002486
program using ROS. The basic idea of robot Panda package which is made up of all theabove mentioned tools and software is to execute a real time bidirectional connectionbetween a workstation PC and the arm of the robot shown in simulator [32].

5.4 Refactoring and Reclassification

The work of this thesis needs the implementation of the concept of refactoring andreclassification of code created. The code created for the project in the implementationstage has gone through many phases of construction. These phases are classified asstages, in these stages code has developed in quality and complexity. The plan withwhich code construction had started, was changed and many amendments made forthis, in addition to many extensions in the plan. This made the code very difficult tounderstand at some places. Corrective actions were taken which include refactoringand reclassification of project code. This is a concept of restructuring existing codewhile keeping the behavior and functionality of the code as it is.
Refactoring is a concept to improve the design and structure of the software. Fewadvantages of refactoring are improved code readability and reduced complexity. Thisconcept also then helps with more extensions which can be part at a later stage andto maintain and demonstrate a simpler and cleaner and more expressive internalarchitecture of project code. Refactoring can also improve performance by savingmemory and making the program run faster [3] [42].

5.5 Connecting Everything - Simulations

Gazebo Simulator is run alongside MoveIT motion planner which help replicate theMoveIT motion plan in Gazebo simulator and thus let user manipulate the robot usingmotion plan in Rviz. How is this achieved is as follows.In the project workspace file structure described in the next chapter, there exists alaunch file. The launch file parameters instructs the tools to be started like MoveIT and

38



Gazebo in this case. It is also specified with a program node filename to be launched.The parameters include nameof the node file, package name and fewother parameters.The launch file is then run from terminal. This is accomplished in following steps andafter changing directory to workspace folder, command "source devel/setup.bash" isrun after which command "roslaunch packagename launchfilename.launcher" is run,which launches the node file allowing it to communicate and use values from othertools like Gazebo. All this runs using ROS and using message exchanges. The nodecan then be programmed to listen to frames from simulator and also command therobot in simulator accordingly or as intended. ROS messages are sent from programnode to simulator and back. This thus gives a brief overview of how everything workswhile a detailed explanation follows in the following chapter.

39



6 IMPLEMENTATION

6.1 Introduction

This chapter describes about what has been done in this thesis to achieve the ob-jectives. This implies all that is practically done and this includes programming thenode using ROS packages eventually and using Latex tool. Also described here is thestructure of both components of the project in steps.
The work involves creating a workspace directory in file system which in this case isknown as panda_gazebo_workspace and installing all necessary software like ROS. Afolder named "src" is created within this workspace panda_gazebo_workspace, whichis then added with other essential repositories cloned as packages, the likes of whichare known as franka_description, sample_applications and panda_simulation. Theseare packages which are essential to building the workspace i.e. running the projectand they are provided by Erdal and can be cloned / forked.
Parallel to these packages, a new sub workspace is created, known as "zero" in thiscase, which contain variable part of workspace i.e. all the work that is added specificto constructing and running node programs in implementation step. The "zero" folderconstructed here contains a launch folder which contain the launch files for launchingthe project from terminal and in parallel it contains another folder named "src" (not tobe confused with "src" folder created before), which contains the node files constructedas programs for running implementation in this project. These files are known in thiscase as "robot_models_node" for world model, "worldsafety" for all the test cases forworld model and "safetytest" for safety model all having cpp file extension. In additionthere also exist a CMakeLists file with a txt extension in the zero folder, which containsall configuration for successfully building the project.
The workspace is then built using command "catkin build". This command runs theessential repositories inside the workspace and also the files in the sub package zeroaccording to configuration files and builds the workspace to run the node program.This is all about the structure of the workspace and the packages used to build theprogram node.
This thesis work also introduces the concept of writing a thesis in the tool "Latex" [9].The tool was written by Leslie Lamport in 1980s and is now a freely downloadable toolfor use.This is a plain text editor which has a host of features to write a thesis. The

40



Figure 6.1

user has option to use markup tagging conventions to define the general structure ofa document which can be an article, book, or letter. The text can be set with differentfonts and enables setting citations and cross-references. This thesis experimentedwith two versions of latex editors TexStudio and MikTeX and both were very easy toproduce an output file in pdf format.
Latex starter repository was forked from Gitlab repository on to local machine. Therepository was named as "thesis-template". This contained a structure of thesis plan,essentially a root ".tex" document known as "thesis.tex" which initializes and connectsother files for different chapters. The editor TexStudio, lets users set a root documentand let users visualize other files. Other files in thesis work were allocated to each ofthe chapter thus defining the structure of the thesis and they were contained in onefolder. Common markups were used to write the text of thesis in Latex which include\section {}", "\subsection{} and many more. Bibliography was set using "Biber" asthis is the latest version for setting bibliography format, instead of the older versionknown as "Bibtex" or "BibLatex", and for this there is a separate file for bibliographyidentified with a ".bib" extension. The file structure has a root document and otherdocuments which are included in the root document along with much more detailsin root document, and it links the other documents of chapters to the main rootdocument. All documents have a ".tex" extension. When run, the Latex tool producesa .pdf file in the directory of thesis repository. This is how typical window in tool forLatex looks like.
Here is how a Latex root document looks like and short description for each section.

6.2 WORLD MODEL IMPLEMENTATION

This task is about implementation of the designed world model using C++ code. Theprogram written, described as a node is used to display the values of position andorientation of robot joints, in addition to world model program implementation whichinclude other classes and object values to be added to construct world model nodeand its features as described previously in theoretical model using UML diagrams.
The program is connected with Rviz motion planner and to Gazebo simulator by

41



launching a launch file which launches the Rviz 1 and Gazebo 2 and the node file 3. Thelaunch file launches all three components and connects them together i.e. the worldmodel node program and MoveIT motion planner as well as Gazebo simulator. Therobot can be moved in MoveIT motion planner using the different colored (Red, Green,Blue, Orange) arrows and once Plan and Execute button is hit, the motion is executedin Gazebo simulator as well, thus confirming movement of a real robot simulation.
The program code is designed to take values from the robot in Gazebo simulatorand display them in output console. The program also builds the object structure byinitializing values and assigning them values thus constructing the world model classdiagram. So after launching the Rviz and Gazebo using launch file, the program is builtand run and thus builds world model node and displays the position and orientationvalues of robot joints as intended in output.

6.2.1 Programming - The Implementation Of World Model

WORLD MODEL - To implement the World Model, files were created each for one ofthe classes. They were created as files to be included as header files(.h) in the mainnode program called in this case robot_models_node.cpp. Each header file describethe implementation of one class and its functionalities by using variables which arethen objectified in the main node program. This helps to build object structure in themain node program for world model.
The main program is used to add objects to the classes and used to input the valuesinto variables using those objects and then used to run the implementation to displayoutput.
The following paragraphs describe the modules of the program used in implemen-tation.

int main(int argc, char** argv)
{
ros::init(argc, argv, "ROSNODE1");
ros::NodeHandle nodehandle("namespacename");
ros::AsyncSpinner spinner(1);
spinner.start();
...// code continued
}

Here the main function is defined and the ROS node defined and initialized. Also aNode handle is specified and a spin loop is initiated to start the program.
abstractobject o1;
graspobject o2;
hand o3;
humanspace o4;
joint o5g;
obstacle o6;
robot robot1;
robotfpe o8;

1http://wiki.ros.org/rviz/UserGuide2http://gazebosim.org/3https://git-st.inf.tu-dresden.de/nikaviator/zero/-/blob/master/src/robot_models_node.cpp

42



world o9;
worldobject o10;
...// code continued

This is an example of declaring objects for all the classes which are included intothe main node file "robot_models_node.cpp", using header files. Here objects aredefined which are later used to input values into variables defined in the classes.
o8.h->grippos= {12.1, 14.3, 18.2};
o9.c->robname="Robot FPE";
o9.c->of=true;
o9.c->moving=false;
...// code continued

This is an example of alloting values to the variables in the classes, included asheader files inside the main program. In most cases pointers are used because theyare imperative to implement association and aggregation functionalities in program.Following sections describe association and aggregation relationships and how theyare essential in implementing useful functionalities in the project code.
Association is used where classes are together related by a relation which is notinheritance but only associated to each other because they have access to each other’svariables. In this relation there is usually a bigger class which needs association relationfrom a smaller class. The bigger class is a more major part of project, using variablesfrom the smaller class. The bigger class gets access to variables of smaller class andalso all the classes inheriting from the bigger class get access to variables from thesmaller class. The vairables are essential to be described in the smaller class andcannot be directly defined in the major class because it adds up to a clean and consis-tently understandable code. In this case the class RobotFPE defined by object "o8"is in association relation with class hand and using variable of class hand i.e. gripposusing a pointer variable. Similarly class quaternion is associated to worldobject classby association relation becasue the variables of class quaternion i.e.x,y,z,w are used todefine orientation which are used in the class worldobject. The class quaternion.h isincluded as a header file in class worldobject which then allows access to variables ofclass quaternion to class worldobject and all classes inheriting from worldobject andthis acces sis done using poniters.
Another relation is aggregation and this is a more critical relation and also usepointer references. It is used where a class variable, if do not exist, must not let its childclasses variables be instantiated and used. In this case world class is in aggregationrelation to Abstract Object class, humanspace class and robot class. The class AbstractObject which have child classes as Grasp Object and Obstacle class are also relatedby aggregation to the class world. So this means if the world class were not to existthe Grasp Object and Obstacle Class variables cannot be initialized or used becausethey use the variables inherited from class Abstract Object which itself cannot existbecause the class world do not exist and these two classes are in aggregation relation.The related variables are all linked using pointer implementations and they help toimplement both association and inheritance relations. So pointers are used to takeinput values for child classes i.e. Grasp Object and Obstacle using pointer variables ofparent class Abstract Object which are used as a refernence with varibales of worldclass.

tf2ros::Buffer tfBuffer;
tf2ros::TransformListener tfListener(tfBuffer);
...// code continued

43



This introduces tf2 as a library4. tf2 is used to write broadcaster and listener in C++and Python programs and essentially used to detect position of variable in one framerelative to second frame, all this are relative to standard "world" frame. This lets theprogram compute difference between two frames relative to world frame and thenthe information used to match movements from one frame to another thus enablingmotion in robot as desired or for example in a game of moving one turtle behindanother. tf2 library is used to create three coordinate frames, a world frame which is astandard, then an x frame which suppose can be a keystroke frame, and a y framewhich suppose can be system listener frame. tf2 broadcaster is used to publish the xcoordinate frame and a tf2 listener listens to it and computes the difference in theframe x and standard world frame and then enables to compute the real differencein position of two frames and this information can be listened by a variable definedin the program. This information can be used to output on console or can be usedto match movements of two frames by moving the frame y to a difference relative toworld frame thus matching frame x and y. To use tf2 first a buffer is allocated andused. After this a listener object is defined for tf2 which will be later used to listen thevalues and use them in program.
while (nodehandle.ok()) {
for (const auto topic : ROSNODE1::topics)
{
geometrymsgs::TransformStamped transformStamped1;
geometrymsgs::TransformStamped transformStamped2;
geometrymsgs::TransformStamped transformStamped3;
...
// Rest of the statements similar and continue until transformStamped7
}
...// code continued
}

while loop is started and objects named transformStamped1...n are defined hereone for each joint.
try {
transformStamped1=tfBuffer.lookupTransform("world",o5a.name,ros::Time(0));
transformStamped2=tfBuffer.lookupTransform("world",o5b.name,ros::Time(0));
transformStamped3=tfBuffer.lookupTransform("world",o5c.name,ros::Time(0));
...
// Rest of the statements proceed until transformStamped7 object and o5g joint
}
catch (tf2::TransformException &ex) {

ROS_WARN("%s", ex.what());
ros::Duration(0.1).sleep();
continue;

}

A try catch block is used to compare and connect the attribute of robot for whichwe seek values i.e. in this case joint 1...7 ,relative to standard world and store them inthe defined objects transformStamped1,2,3....Then exceptions are caught in catch block and some statements are defined for this.This is in case some things don’t work. The objects store the values in tfBuffer after thelookup command compares the joint values with standard frame values and computesthe difference before storing the final position in the object variables.
o5a.p1[0]=transformStamped1.transform.translation.x;
o5a.p1[1]=transformStamped1.transform.translation.y;
o5a.p1[2]=transformStamped1.transform.translation.z;

4http://wiki.ros.org/tf2/Tutorials/Introduction

44



ROSINFOSTREAM("pandalink1 Position is"<<"x="<< o5a.p1[0]<<",y="<<o5a.p1[1]<<",
z="<<o5a.p1[2]);

o5a.or2.w=transformStamped1.transform.rotation.w;
o5a.or2.x=transformStamped1.transform.rotation.x;
o5a.or2.y=transformStamped1.transform.rotation.y;
o5a.or2.z=transformStamped1.transform.rotation.z;
ROSINFOSTREAM("pandalink1 Orientation is"<<"w="<< o5a.or2.w<<",x="<<o5a.or2.x<<",
y="<<o5a.or2.y<<",z="<<o5a.or2.z);
...// code continued

Here in these steps, the object variables of the program take input the objects valuesfrom object transformStampedx and store them in the node program variable andwhich then outputs these values.
This program thus listens to values from simulation and displays using appropriateoutput statements. The robot in Gazebo is thus connected to Rviz motion plannerusing ROSwhich enables the node program robot_models_node.cpp, to listen to desiredvalues in this case position and orientation of joints .

6.3 Future Work Implementing Application Model
Programmatically

The thesis work i only completed up to implementing world model and safety model.The application model is left pending to be completed in future.

45



7 EVALUVATION
This section demonstrates the results for the program implemented in the previouschapter as well as the results for the test cases implemented.
7.0.1 World Model Implementation Results

The implementation section gives out results for the Position and Orientation of Jointsof Robot Franka Panda Emika .
They are 7 in number but only about 3 are shown here as a sample.Here are theresults .

pandalink1 Position is x=0,y=0,z=0.333
pandalink2 Position is x=0,y=0,z=0.333
pandalink3 Position is x=-0.120566,y=-1.81861e05,z=0.625095
....//code continued
pandalink1 Orientation is w=1,x=0,y=0,z=7.54195e05
pandalink2 Orientation is w=0.693616,x=-0.693595,y=-0.137573,z=-0.137468
pandalink3 Orientation is w=0.980906,x=1.16121e05,y=-0.194483,z=8.93912e05
....//code continued

The robot was moved in Gazebo Simulator after a motion planning trajectory execu-tion in Rviz motion planner. The node was again built and run giving new values forposition and orientation of joints.
pandalink1 Position is x=0,y=0,z=0.333
pandalink2 Position is x=0,y=0,z=0.333
pandalink3 Position is x=-0.00290409,y=0.296506,z=0.442232
....//code continued
pandalink1 Orientation is w=0.703636,x=0,y=0,z=0.710561
pandalink2 Orientation is w=0.120731,x=-0.695508,y=-0.127549,z=0.696724
pandalink3 Orientation is w=0.443721,x=-0.314109, y=0.478016,z=0.68989
....//code continued

This show a changed set of values for position and orientation for all joints of RobotFranka Panda .

7.1 World Model Test Implementation

The world model program implementation node constructed and explained in abovesection and known as robot_models_node. This program need to be tested for some

46



key points. For this another program called a node "worldsafety" is constructed. Thereare many tests done for this program which include various tests which are describedin following sections.Static testsAfter this stage the program is once again built and run and this now displays thenew changed values for robot joints position and orientation in Gazebo simulator.The results are then shared in evaluation section. More details about the tools andattributes they can handle are described below.

47



Bibliography
[1] A. McMurrey" "David. Features of Industrial Robots. URL: https://www.tu-

chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/
TechComm/acchtml/class_ex.html.

[2] Souri Alireza, ali Sharifloo Mohammad, and Norouzi Monire. “"Formalizing ClassDiagram In UML"”. In: (2007).
[3] Kaur Amandeep and Kaur Manpreet. “"Analysis of Code Refactoring Impact onSoftware Quality "”. In: (2016).
[4] A Kulkarni Amith et al. “"Recent Development of Automation in Vehicle Manufac-turing Industries"”. In: (2019).
[5] Dhillon B.S. "Robot Reliability and Safety". Springer Verlag, 2015.
[6] Siciliano Bruno, Sciavicco Luigi Lorenyo, and Villani Giuseppe Oriolo. "Robotics

Modelling,Planning and Control Advanced Textbooks in Control And Signal Processing
Book ". Springer, 2009.

[7] Siciliano Bruno, Sciavicco Lorenzo, and Villani Giuseppe Oriolo Luigi. "Robotics :
Modelling Planning and Control ". Springer, 2010.

[8] CeTi Book. URL: https://wwwpub.zih.tu-dresden.de/~scheuner/ad0bcdbfabcb688174b767fb01dec1a5d482ed/
content/files/CeTI_Book_v18.pdf.

[9] Creating a document in LaTeX. URL: https://www.tu-chemnitz.de/phil/
english/sections/linguist/independent/kursmaterialien/TechComm/
acchtml/class_ex.html.

[10] Rus Daniela and T.Tolley Micheal. “"Design, fabrication and Control of SoftRobots"”. In: (2015).
[11] M. Ebert Dirk and D. Henrich Dominik. “"Safe Human-Robot-Cooperation: Image-based collision detection for Industrial Robots"”. In: (2002).
[12] Matheson Eloise et al. “"Human–Robot Collaboration in Manufacturing Applica-tions: A Review"”. In: (2019).
[13] Sabah Al-Fedaghi. “"Diagramming the Class Diagram: Toward a Unified ModelingMethodology"”. In: (2017).
[14] GmbH Franka Emika. "Franka Panda User Guide". Franka Emika GmbH, 2018.
[15] Gołda Grzegorz, Kampa Adrian, and Paprocka Iwona. “"Analysis Of Human Oper-ators And Industrial Robots Performance And Reliability"”. In: 9 (2018).
[16] Zhang Hong. “"Visual Motion Planning for Mobile Robots"”. In: 18 (2002).

48

https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://wwwpub.zih.tu-dresden.de/~scheuner/ad0bcdbfabcb688174b767fb01dec1a5d482ed/content/files/CeTI_Book_v18.pdf
https://wwwpub.zih.tu-dresden.de/~scheuner/ad0bcdbfabcb688174b767fb01dec1a5d482ed/content/files/CeTI_Book_v18.pdf
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html


[17] M da Fonseca Ijar and N Pontuschka Maurício. “"The State-of-the-art in SpaceRobotics"”. In: (2015).
[18] Edward Colgate J., Wannasuphoprasit Witaya, and A. Peshkin Michael. “"Cobots:Robots For Collaboration With Human Operators"”. In: (1996).
[19] Osis Janis and Donins Uldis. “"Formalization of the UML Class Diagrams "”. In:(2010).
[20] Cheng Jingyuan, Chen Xiaoping, and Lukowicz Paul. “"Towards Coexistence ofHuman and Robot: How Ubiquitous Computing Can Contribute?"” In: (2014).
[21] Wienke Johannes and Wrede Sebastian. “"Failures In Robotics And IntelligentSystems"”. In: (2017).
[22] J. Craig John. "Introduction To Robotics ". Vol. 3. Pearson Education International,2005.
[23] Kim Junsu, Moon Hongbin, and Jung Hosang. “"Drone-Based Parcel DeliveryUsing the Rooftops of City Buildings: Model and Solution"”. In: (2020).
[24] D. Riek Laurel. “"Healthcare Robotics"”. In: (2017).
[25] Görner Michael et al. “"MoveIt! Task Constructor for Task-Level Motion Planning"”.In: (2019).
[26] Peshkin Michael and Edward Colgate J. “"Feature: Cobots"”. In: 26 (1999).
[27] Vasic1 Milos and Billard Aude. “"Safety Issues in Human-Robot Interactions"”. In:(2013).
[28] Visinsky Monica, D. Walker Ian, and R. Cavallaro Joseph. “"Fault Detection andFault Tolerance in Robotics"”. In: (1992).
[29] Ben-Ari Mordechai and Mondada Francesco. "Elements of Robotics". Springer,2018.
[30] Quigley Morgan et al. “"ROS: an open-source Robot Operating System"”. In:(2009).
[31] NikolausMuellner. “"ThreeDecades after Chernobyl: Technical or HumanCauses?"”In: The Technological and Economic Future Of Nuclear Power (2019).
[32] Koenig Nathan and Howard Andrew. “"Design and Use Paradigms for Gazebo,An Open-Source Multi-Robot Simulator"”. In: (2004).
[33] B.M. de Koster René. “"Automated and Robotic Warehouses: Developments andResearch Opportunities"”. In: (2018).
[34] H Hosseini S and M Goher K. “"Personal Care Robots for Older Adults: AnOverview"”. In: (2016).
[35] Ahsan Badruddin S. and M. DildarAli S. “"Recent Developments in the Optimiza-tion of Space Roboticsfor Perception in Planetary Exploration"”. In: (2015).
[36] Robla-Gomez S. et al. “"Working Together: A Review on SafeHuman-Robot Col-laboration inIndustrial Environments"”. In: (2017).
[37] Haddadin Sami et al. “"On Making Robots Understand Safety:Embedding InjuryKnowledge Into Control"”. In: (2007).
[38] A. White Stephen. “"Introduction To BPMN"”. In: (2004).
[39] Leigh Anderson Susan. “"Asimov’s “Three Laws of Robotics” andMachineMetaethics"”.In: (2005).
[40] Kerezović Tanja et al. “"Human Safety In Robot Applications – Review Of SafetyTrends "”. In: (2013).

49



[41] Niemueller Tim and Widyadharma Sumedha. "Artificial Intelligence – An Introduc-
tion to Robotics". 2003.

[42] Mens Tom. “"A Survey of Software Refactoring"”. In: (2004).
[43] Gao Yang and Chien Steve. “"Review on Space Robotics: Towards Top-LevelScience through Space Exploration "”. In: 2 (2017).

50



Statement of authorship
I hereby certify that I have authored this Master Thesis entitled Design and Implemen-
tation of a Model-based Architecture for Cobotic Cells independently and without undueassistance from third parties. No other than the resources and references indicatedin this thesis have been used. I have marked both literal and accordingly adoptedquotations as such. There were no additional persons involved in the intellectualpreparation of the present thesis. I am aware that violations of this declaration maylead to subsequent withdrawal of the degree.
Dresden, 27th October 2020

Nikhil Ambardar


	Title page
	Contents
	INTRODUCTION
	Robots and Cobots
	Components Of a Typical Robot
	Uses And Applied Fields
	Elderly Care
	Medical Uses
	Warehouse Operator
	Food Home Delivery
	Automotive Industry

	Importance Of Robots In Today's Time
	Expectations From Robots
	Evolution - Robots to Cobots

	INSPIRATION AND DRIVING FORCE
	BACKGROUND
	About Franka Emika Panda Robot
	Robotics - Features
	Sensitivity
	Drive a.k.a Motion
	Impedance
	Collision Detection and Reaction

	Software Tools Robot Franka Uses
	Robotic Coexistence With Humans - Meaning Of Cobots
	Existence Alongside Humans
	Collaboration and Co-operation
	Real-time and Presence Acknowledged Collaboration

	Accidents Due To Malfunctions and Consequences
	Mechanical Failure
	Electrical Anomaly In Components
	Malfunctioning Software
	Human Operator Errors

	Making Robots Safer And Safe Deployment Practices

	STATE OF THE ART
	Motion Planning And Simulations
	Modeling - Explaining Choice of Design Depictions
	Unified Modeling Language (UML) Diagram For World Model Class Diagram
	Business Process Modeling Notation (BPMN) for Application Model
	Unified Modeling Language State Machine for Safety Model

	Tools Used
	Setup Environment Using ROS To Run Services, Motion Planning In MOVEIT and GAZEBO For Simulations and more


	CONCEPT
	Theme
	The Models Designed
	Programming Of Hardware And Software Components - Purpose And Concepts
	Refactoring and Reclassification
	Connecting Everything - Simulations

	IMPLEMENTATION
	Introduction
	WORLD MODEL IMPLEMENTATION
	Programming - The Implementation Of World Model

	Future Work Implementing Application Model Programmatically

	EVALUVATION
	World Model Implementation Results
	World Model Test Implementation

	Bibliography

