TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik Institut fir Software- und Multimediatechnik, Lehrstuhl fir Softwaretechnologie

Design and Implementation of a
Model-based Architecture for
Cobotic Cells

Nikhil Ambardar

nikhil.ambardar@tu-dresden.de

Born on: 5th November 1989 in Mumbai, India
Course: Distributed Systems Engineering
Matriculation number: 4667008

Matriculation year: 2016

Master Thesis

to achieve the academic degree

Master of Science (M.Sc.)

Supervisors

Dr. Sebastian Gotz,

Dipl.-Inf. Johannes Mey, and
Dipl.-Inf. Sebestian Ebert

Supervising professor

Prof. Dr. rer. nat habil. Uwe ABmann

Submitted on: 27th October 2020

mailto:nikhil.ambardar@tu-dresden.de

Contents

1 INTRODUCTION
1.1 Robotsand Cobots
1.2 Components Of a Typical Robot
1.3 UsesAndApplied Fields
131 ElderlyCare
132 MedicalUses
1.3.3 Warehouse Operator
1.3.4 Food Home Delivery
1.3.5 Automotive Industry
1.4 Importance Of Robots In Today's Time
1.5 Expectations FromRobots L.
1.6 Evolution - Robotsto Cobots

2 INSPIRATION AND DRIVING FORCE

3 BACKGROUND
3.1 About Franka Emika Panda Robot
3.2 Robotics-Features
327 Sensitivity
322 DriveakaMotion
323 Impedance
3.2.4 Collision Detection and Reaction
3.3 Software Tools Robot FrankaUses
3.4 Robotic Coexistence With Humans - Meaning Of Cobots
3.4.1 Existence Alongside Humans.
3.4.2 Collaboration and Co-operation
3.4.3 Real-time and Presence Acknowledged Collaboration
3.5 Accidents Due To Malfunctions and Consequences
3.51 Mechanical Failure o
3.5.2 Electrical Anomaly In Components
3.53 Malfunctioning Software
3.54 Human Operator Errors oo
3.6 Making Robots Safer And Safe Deployment Practices.

4 STATE OF THE ART
4.1 Motion Planning And Simulations oo oL

O OO NNNdJO D™D

4.2 Modeling - Explaining Choice of Design Depictions 20
4.2.1 Unified Modeling Language (UML) Diagram For World Model

Class Diagram 21
4.2.2 Business Process Modeling Notation (BPMN) for Application Model 23
4.2.3 Unified Modeling Language State Machine for Safety Model . . 25
43 ToolsUsed 26
4.3.17 Setup Environment Using ROS To Run Services, Motion Planning
In MOVEIT and GAZEBO For Simulations and more 26
5 CONCEPT 32
51 Theme . . . 32
52 The Models Designed 33
5.3 Programming Of Hardware And Software Components - Purpose And
CONCePLS . . o o o 37
5.4 Refactoring and Reclassification 38
5.5 Connecting Everything - Simulations
.. 38
6 IMPLEMENTATION 40
6.1 Introduction 40
6.2 WORLD MODEL IMPLEMENTATION 41
6.2.1 Programming - The Implementation Of World Model 42
6.3 Future Work Implementing Application Model Programmatically
.. 45
7 EVALUVATION 46
7.0.1 World Model Implementation Results 46
7.1 World Model Test Implementation 46
Bibliography 48

1T INTRODUCTION

Objective Of Thesis: Design and Implementation of a Model-Based Architecture for
Cobotic Cells.

1.1 Robots and Cobots

A robot is a machine developed by humans to do work for them and to make their
lives easy. Humans had to keep doing repetitive tasks throughout history which were
essential things to do and there have been times when enough manpower was absent
or unavailable to do the required work. This led to humans to think about designing a
machine which can obey their commands to accomplish a series of steps to do a job.
They then described these machines as a robot.

In fact, any machine designed for any specific task and purpose can be termed as a
robot. But the term "robot" is generally described as a machine that is versatile and can
accomplish a range of tasks. The robot is characterized by few qualities like motion in
the body of robot i.e. it must be able to move itself, motion of control surfaces like arm,
robot must be able to do the task it is designed for, like pickup and place down objects,
or be able to work at a factory assembly line, at the same time must be able to provide
safety to some degree. Robots must provide some or all of these qualities according to
the purpose itis designed for .There are other aspects which can be adding and remov-
ing control surfaces to suit a specific type of job or size of area of field of the work profile.

Along the evolution of time the machines developed from designing basic tools
to varying degrees of complexities like space robots. As decades and centuries of
time passed by, human thinking evolved and refined, their outlook towards machines
improved and so did their skills with machines to make them more self contained
and all this was done to reduce human intervention for decision making. To start with
these were elementary forms of machines which are principally described as robots.
Nowadays humans are trying to build in artificial intelligence into robots to make them
self reliant. One example is self driving cars which are being designed. In the future
these cars will have a high level of artificial intelligence built into them which will make
them very reliable performer.

New features were built into machines to add functionality and this was done using

physical mechanisms in early days like using valves for changing and redirecting water
supply in pipes and tracks change railroad paths using levers. But as times changed
and many levels of developments happened for physical machines using some form of
intelligence then came the era of information technology and development of software
systems and programming which was used to control hardware until the last level of
action. This was done using a host of components added to hardware which linked it
to software systems and they were first circuits which then turned to micro-controllers,
and then to electronic components that could be programmed and integrated with
physical systems which were then used to manipulate control surfaces thus forming
high level of evolution in robotics [6](Chapter1).

Robotics is a relatively new and evolved technical field. It is an evolved version of
technical development of machines and software field which are both part of robotics.
It won't be wrong to claim that robotics is epitome of technical development in ma-
chines. Nonetheless robotics is still a very expensive field of research. Robots have a
high one time cost as well as very high operational, development and research costs
and if in a broken down condition can become expensive to fix. It is still evolving and
studied as a modern research area and it is continuously expanding and acting as a
base to develop other technologies. Study of robotics is only available to a lucky few
people and research is done every day to make it affordable and accessible to more
general people. There are many industrial organizations dealing with robotics field
and they are doing extensive research for it.

This has nowadays led to creation of an ecosystem of machines which are versatile
and follow hook and template structure to do many tasks using same kind of concepti.e
technology was used for multiple purposes thus adding to versatility. This has added to
functionalities of robots and made them much more versatile and cost efficient as they
can be used to perform multiple jobs. This is akin to using different attachments on a
modern day vacuum cleaning machine to the the same job of vacuuming by suction.
Robots in today's time are meant to do easiest of tasks like moving objects around
and giving company to elderly, to complex tasks like critical surgical operations on
humans in medicine and working on automobile manufacturing and assembly line [41].

Robots are very essential to some of the today's modern industry because they
help humans accomplish tasks which otherwise are too difficult to perform with the
speed and accuracy with which robots can do them. In addition robots can perform
tirelessly and do not cringe if they work in day or night. This makes them a versatile
tool that is friendly and beneficial to humans. The robots thus need to live, work and
perform alongside humans in most cases. This is usually critical in factories and also
homes where they are used nowadays. These robots maybe very intelligent and this
makes them very capable but in most cases they cannot completely replace human
presence which is still required to monitor robotic operations and sometimes humans
are required to alter plans and make decisions as per orders and this gives birth to
a situation where robots need to work alongside humans and this involves only safe
operations because in the event robots cause injury to human it can cause very serious
situations and hazard to human well being and may also cause death of a person [36].
Here comes the concept for cobots. They are robots which are built to perform along-
side humans and this too safely. The word cobot is derived from so called collaborative
robots which are kind of robots made to perform alongside human presence in a
commonly used area. Most times they are in very close proximity working alongside
each other but the design decisions and multi level safety which range from soft built to

Figure 1.1 Image Source - Footnote 1

auto-emergency stop features ensure they can work very reliably alongside each other.

1

1.2 Components Of a Typical Robot

Any robot is a machine that is made up of mainly steel, plastic and more complex
materials put together and typically needs electric power to run and perform some
work. Robots are programmed using computer software in today's times. Software
dictate the robotic parameters and manipulate control surfaces by reading sensor
values to enable decision making as per the situation detected and decisive action
pre-programmed for it. This can be used to fine tune its actions to perform most com-
plex of tasks independently [22](Chapter1). Robots in today's times have embedded
control built in, which guide the robot to do a job safely in real world environment
setting.

Robots range from auto/semi-automatic functional form to resembling human form
type to industrial grade and medically utilized robots. Robots have been made to
look and behave exactly like humans in present time and this is achieved by using
soft silicone materials which makes them look sophisticated and intelligent in a home
setting. But they are not always designed for good looks and in industry setting they
are bare bone machines most time lacking even correct covering and this is to aid in
maintenance and improve operational functionality. Today robotics is working with
cutting edge research enabling it to function up to the level of developing safe self

"1 https://blogs.3ds.com/northamerica/future-robots-and-ensuring-human-safety/

driving cars [10].

So it can be concluded that robotic components are body/frame, control system,
control surfaces, and drive train.

1.3 Uses And Applied Fields

Robots have been developed to suit and work in various fields in today's time. In-fact
there is an appropriate type of robot for almost any work today. They range from
most easy work to the most complex of tasks. In this section more light on this area is
thrown by describing some use cases [29](Chapter1).

1.3.1 Elderly Care

Robots are used in home setting to provide company to lonely elderly and give care
to them. There are soft bodied robots made up of silicone used in Japan, and this is
a place with sparse population and few people to care for elderly. These machines
there help the seniors from keeping track of their medicines to playing music to them
as well as talking to them. They move objects for them, monitor their health and even
help in distress by calling help for lonely seniors [34].

1.3.2 Medical Uses

Robots are used in regular and critical surgeries performed on humans in today’s
time. The performance of robots as compared to humans is very high in critical hu-
man diagnostic operations like C-section surgeries and much more complex ones like
angioplasty.

The can perform medical procedures very fast and with clean cuts and stitches that a
human hand is not capable of performing. They can as well perform knee replacement
surgeries and many more like making incision to flush kidney stones with amazing
accuracy. Many robots also let the surgeon doctor to take control of control surfaces
and this aids in minimizing errors caused by a shaking hand a human doctor may
have [24].

1.3.3 Warehouse Operator

Robots are essential workers in warehouses. They help to handle parcel items in
automated way to pick up the items, stamp them with bar-code stickers and sorting
them according to size and destination. They can also read information from parcels
and register movement of parcel boxes in the central repository which let a user
know exact status of parcel movement. Here they most times need to work alongside
humans and under human monitoring. They also move items across the shop floor to
a different assembly line [33].

1.3.4 Food Home Delivery

Very recently some tech giants are experimenting with idea of delivering pizza to home.
For this drones are used which supposedly fly to an address and safely drop the pizza
at a safe location for the customer to pickup. This is already done in practice in some
cities. The drone used is also a type of robot which is governed by many technologies
like GPS signals, radar proximity sensors and camera to deliver pizza without causing
any harm to people around [23].

1.3.5 Automotive Industry

Robots are used in automobile manufacturing assembly lines to produce high quality
automobiles. They can minimize errors when compared to using a human working
style and give high quality finished products that has high error possibility when
manufactured by a human. Many global automobile brands are known for their
high quality cars all over the world and they use robots to manage the process of
manufacturing. Robots pickup parts, move them to appropriate locations, weld or
assemble them as per need, and then let a human work alongside to do some things
like monitoring or operations like critical assembly [4].

1.4 Importance Of Robots In Today’s Time

Robots in today's time offer some very specific and important benefits which cannot
be ignored or replaced. It include safety, precision of work, quick delivery of product
to market, accuracy in repetitive tasks without human like excuses and many more.

Robots are ideal for uses in high risk area like volcanic explorations, space probes,
deep ocean operations and in bomb diffusion squads. In these situations they perform
extraordinarily well. They are stable workers without boredom, cannot get tired, don't
compromise on safety and don't make excuses for under performance. They work
tirelessly and ensure accuracy, precision and quality of work in any situation. Once
programmed and up and running they can work a long time without supervision and
while maintaining standards of their work under all situation.

Robots are used to look for debris in ocean floor from the wreckage of a sunken
ship or crashed air-crafts. There may be an deep ocean surface study exploration or
a study on largely unknown aquatic life which can only be performed using robots.
Robots are imperative to do such operations.

In cases of metal and mineral exploration and study on ocean floors, robots are
machines that cannot be replaced and thus are credited with numerous discoveries.
They can move control surfaces and transmit images of seafloor and let humans take
control of situation on ocean floor from several miles distance on ocean top. The
pressure present at ocean floor can only be tolerated by a submarine and sending
a human in deep depths is not possible. Similarly robots are used in space probes
and space missions where they do operations humans are not capable of doing like
exposing themselves to work in open space where harsh UV sunlight can cause bad
effects on human body and any exposure of human beings there is only limited for
critical operations to minimize risks and high costs associated to cover the risks. They
provide safety to humans and make work easier and faster along with giving reliability

and required precision [35] [43] [171].

Robots are used around volcanoes erupting molten lava to collect samples and
study materials and these areas have very high temperatures. These are tasks that
are impossible and too hazardous to be done by humans thus making robot a tool
that cannot be replaced.

Employing robots is cheap and needs only power which is also highly optimized.
Robots have a one time costs and low power consumption which make them cheaper
to employ in most cases than humans. They are also very reliable nowadays thus
offering very low maintenance and great value for money.

Robots are intelligent. They are programmed to make their own decisions and know
how to tackle almost all situations. They have a learning mode where they can be
taught instantaneously some tasks that they can mimic, but this is usually limited for
research purposes in university setting.

1.5 Expectations From Robots

There are few basic expectation that a Robot must in all cases adhere to and they
are called as Laws of Robotics which define these three expectations:described as
AsimoV's Laws of Robotics. They are described as follows :

- A robot must not in any case cause a minor or hazardous injury to a human being
or allow the injury of a human being due to inactivity.

- Arobot under any and all circumstance must obey the orders which are given by
humans except of those that conflict with the First Law stated above.

- A robot must protect its existence unless in a situation in conflicts with the First or
Second Law stated above [39].

1.6 Evolution - Robots to Cobots

Most use cases defined in the above sections have the need for a robot to work
alongside a human. Thisis a necessary step in the evolution of robots and as per today’s
need for robotic performance. The next step in robot evolution is the introduction of
the term "cobot". Cobots are nothing but robots but the ones those are made to work
alongside robots. This has become a need for most robot use cases these days as
the present and future of robots is to work together with humans. Cobots have many
features of safety built into them which enables them to operate alongside humans
without causing any injury to humans. The features range from object and obstacle
detection to a complete stop when in close proximity to a human [12].

2 INSPIRATION AND DRIVING
FORCE

The topic of this thesis is about design and implementation of a model based archi-
tecture for cobotic cells. With the advent of tactile internet, regularizing coexistence
of robots and humans has become imperative, meaning the so called "cobots", need
a new use case architecture for its unit cell to operate safely alongside humans and
real world objects and obstacles. This architecture is based on multiple models each
describing one aspect of use case aiding in functionality of cobots. For this the thesis
described three models namely world model, application model and safety model
which are described using different notations.

The world model is a global model describing the cobot and other things in its
environment, giving "on the whole" information about the components in real world a
cobot has, this includes one or more humans who can be moving in and out of cobotic
world zone, then some obstacles and grasp object which can be a ball or cube.

The application model describes the flow of individual actions of grasping that can
be performed by cobot according to a motion trajectory to accomplish the given task.
This model is all about performing the task and action of the cobot. Lastly, the safety
model shows how a cobot achieves the goal of not causing any harm to humans or
other objects in its proximity and how to respond to them by moving around them
appropriately in cases imminent collisions are detected.

The real life problem scenario can be described as follows. Robot is expected to
perform some job and to make it to do that with safety i.e. detect and evade obstacles
/ humans, this safety and application can be achieved in two different step cases. The
models designed and described ,address to this task or problem of first, to train the
robot for performing actions according to a preconceived plan using inbuilt “teaching”
feature of robot and then doing it safely in real world conditions.

The use case can be understood by seeing a scenario where we can train the robot
in a laboratory / ideal conditions and give a working functionality to it by giving a
design which shows how to perform a task which robot can use to work accordingly
and this is known as application model implementation. This robot has a teaching
mode where we can set a series of poses and grasp actions manually which can
train the robot to perform a task according to a plan and this can be done repetitively

10

by the robot later in scenario 2 which is real world and has added conditions of realism.

For this ,complex condition are added to application model about how to respond
when it detects a human in proximity and obstacles in trajectory paths and in addition
this real world simulation adds real world conditions like adding torque to joints as is
in real world to see if arm can for example really life an object.

In scenario one the architecture of robot's world model is already known and has
thus been used ,its teaching capability to train it to move to a coordinate position and
then start a trajectory for instance at position X to move a position close to an object
that is needed to be say picked up and then it can use its gripper to pickup the object
and again move arm to another desired location where it want to drop the object and
there it releases the gripper to put that object down and thus completing the task at
position Y. This is part of application model as described before.

This is smaller use case replication of saying a robot actually moved but here the
idea is restricted to only moving arm which is the same when it comes to functionality
achieved by robot moving itself vs moving its arm as previously mentioned, and this
is fulfilling the same work of detecting things in proximity and achieving the tasks by
completing trajectory as well as at same time to do it safely by responding appropriately
as per intended use case programmed for safety.

So far above description talks about training the robot in scenario 1 and now an-
other scenario is considered which is a real world task where the robot is made to
perform the same work it was trained in Scenario 1 but in real life and this means the
safety aspect should now be built into the scenario and for this a safety architecture
is constructed which is used by robot, by telling it how to respond when seeing an
obstacle like a cube or box for example or a human being.

This sets the tone for the work for this thesis.

11

3 BACKGROUND

3.1 About Franka Emika Panda Robot

Franka Emika GmbH, a technologically sound company from Munich, Germany, has
come ahead to address to this issue of high costs and to provide a solution by intro-
ducing an affordable and cheap robot known as robot Panda. This is a sensitive and
multifaceted machine made available to research communities in universities and for
students to learn and experiment with robots. Robot Panda is a part of structural
ecosystem of new age robots which are cheap to buy, program and function and are
developed with the main objective as a research robotic machine made available to
fiddle and learn by students in universities. Its second objective is to introduce its
presence as a co-worker in a factory who work along humans in a hybrid mode model
and then thirdly as an friend and helping assistant in life for lonely seniors and sick
people needing basic help and assistance [14].

There are various interfaces and tutorial series made available for robot Franka
which help to manipulate it. In addition there is an ecosystem of repositories used
to run and manipulate the robot. Nowadays even smartphone apps are developed
to give idea of robotics to students. The robot is made with many features, notable
being a learning capability, where in there is a learning mode which enables robot to
learn a series of poses and grasp actions which can then be run and replicated. This
is a feature used as a research subject. In addition there are many tools used to run
the Franka ecosystem like Moveit / Rviz i.e. used for motion planning and the robot
also uses Gazebo simulator. The robot Panda relies upon the Robot Operating System
as the underlying operating system which is used to run it in background. The tools
which are used to manipulate robot Panda like MovelT / Rviz only use ROS to connect
to the robot and command and control it.

Robot Panda is a very sensitive machine and this give it immense capability to do
tasks few other machines can do. It has torque sensing framework which can help
manipulate the arm very precisely. Robot Panda is also a very safe robot machine
and there are many safety features built inside it, like stop button that can be used to
shut down the robot. There is as well a research community and many forums which
can help educate and guide students and researchers working in the field of robotics.
This as well help people to share knowledge and development with each other and
develop more functionality allowing a greater experimentation with this machine.

12

Figure 3.1 Robot Franka Emika Panda Image Source - Footnote 2

There are many more robots developed but this thesis describes only about the
robot Franka Emika Panda. Here is what robot Panda looks like.

1

3.2 Robotics - Features

Robots are characterized by a common set of features. Few general features of robots
are -

3.2.1 Sensitivity

Robots in today's time are characterized by an essential property of sensitivity and this
makes up the idea of cobots. Robots inherently most times may not have this property,
but not having this property limits their usage. In today's day and age traditional robots
are obsolete as they were not sensitive enough to presence of a human which limited
them as machines that were not suitable to work alongside humans. Present day
belongs to cobots which have the feature of sensitivity built in. This ranges from using
soft material for physical construction of robot and this is in case if cobot hits a human,
the soft body and surface can limit the damage to a human being. Then there are built
in features in cobots that enable them to be sensitive for its surroundings. This would
mean it must sense its surrounding using host of onboard sensors to detect objects
of different types and only act accordingly. A robot use a range of different sensors
like light sensors in camera, pressure sensors in arms, chemical sensors to detect and
measure for instance air quality, listening sensors to adjust speaking volume, radar
for scanning surroundings in 3D for precision mappings, and many more as per the

2. https://robots-blog.com/2016/05/10/franka-emika-everybodys-robot/

13

need of the job or features to be integrated. Other features include using a slow
motion mode when a human is detected in proximity to an emergency stop feature
once a close obstacle is detected. Some of sensitivity features are part of materials
handling [26].

Robot Franka Emika Panda is having an arm which is made up of seven joints and
all have torque sensors giving robot Panda great sensitivity. This allows robot Panda
to detect any kind of forces acting on its arm upto the level that it can measure them
and detect exact spots where and on which joint, how much torque is applied.

3.2.2 Drive a.k.a Motion

The main characteristic of any robot is movement. A robot should be able to move
itself around and this also means it should be able to move parts like an arm which
enables it to perform the tasks. We can call the arm and other moving parts of cobots
like a gripper as control surfaces. The motion is characterized as essential property of
a cobot as it enables it to accomplish a task. Motion is almost always using remote
control or by moving on pre-programmed paths.

If a robot arm cannot move it is not able to accomplish a task or if it cannot move
itself in a continuous motion then it is not capable to be considered as a research
interest. There are various technologies that are used to drive the robots and its
control surfaces like using electronics and hydraulic systems [1]

3.2.3 Impedance

Essential property of a cobot is the built in quality of physical resistance and ability
to electronically measure it. It is this property of robot which enables the robotic
components to electronically alter its control surfaces inside a range so that it can
have a level of tolerance on control surfaces when depressed and when relaxed phys-
ically. This uses electric resistance on surfaces to detect forces on control surface
which let the robot know its surface have come in contact with an obstacle or item
and also measure electronically how much force is applied to it. This property has
been developed to even measure how much of a control surface is depressed as it
measures the movement of spring or a foam material in side the surface which may
be used as appropriate material to buffer the surface. This maybe simply explained as
an operation of a mechanical spring. This capability gives a touch of gentleness and
awareness when interacting with the objects in environment. This is also similar to the
human arm which tenses and relaxes the muscles to adapt performing any task like
pushing, depending on the load and situation [14].

3.2.4 Collision Detection and Reaction

A robot of present day usually have quality of anticipating collisions built in and this
done by detecting obstacles and identifying them in its path. This is described as
collision detection and the associated property is of avoidance. So once the path is
detected and an obstacle identified in the path then it must be avoided. This can be
achieved by stopping in a safe distance before the actual contact with the obstacle.

14

Another property is of reaction. This can be described as defining robotic reaction
once an obstacle is detected in the path. This includes trajectory modification and
alteration to find a new trajectory which maybe around the obstacle or a completely
new one. Algorithms are used to achieve this property which are very complex in
nature but appropriately modify the path of the robot.

There is another dimension present as well to identify with property of collision
detection. The torque sensors present in Panda arm detect torque when then move
against an obstacle and once past the defined safe limit, drive the robot to a complete
emergency halt [11].

3.3 Software Tools Robot Franka Uses

Robot Panda uses several tools for its functioning. There are general software robot
Panda uses which are also used by other machines as well as there are software specif-
ically developed for robot Panda. Robot Panda also comes with several software library
packages which let it run on user machines using Robot Operating Systems as platform
already installed. The software systems robot Franka Emika Panda uses is MovelT/Rviz
for motion planning. This lets user set various parameters of robot Panda and lets
them tweak some of its features to see how the motion plan executes in theory. This
MovelT framework sets tone for robot motion planning activity but the plan visualized
here is only a hypothetical plan which may not be possibly executable in real world [25].

This is where there arises a need for another software to check if the motion plan-

ning is possible in real world. For this a common software used is Gazebo simulator.
This simulator have additional real world parameters like torque on joint which can be
altered to see how robot reacts for a motion plan in real world [32].
There maybe cases where a robot cannot really afford to bear weight to pickup an
object and this maybe visually possible in MovelT/Rviz tool as it is just a visualization
tool framework but then the same motion plan is run in Gazebo simulator which runs
the plan with defined torque on all joints which can as well be altered to see more
reactions on robotic arm and this lets user see if the simulation is really possible in
real world conditions and thus confirm if the motion plan is real world possible.

3.4 Robotic Coexistence With Humans - Meaning Of Cobots

Cobots are evolved version of traditional robots, and traditional robots are only meant
to perform without safety features on both levels comprising physical safety as well
as software built detection features giving intelligence to robot. Thus these are the
factors which differentiate a robot from a cobot.

These features are built in cobots but traditional robots do not have them. Cobotic
safety relies on lightweight construction materials, curved edges on control surfaces
and no sharp edges but only rounded curves, and comes with inherent limitation of
speed and force when working along human presence [26].

Cobots are built for an industry setting workspace and have different hardware

and software to run them along with above mentioned features of safety. Some of
essential features of cobots are -

15

3.4.1 Existence Alongside Humans

Cobots and humans work with each other in a common area to accomplish a cer-
tain task. A traditional robot is not built to perform alongside human but a cobot is [18].

3.4.2 Collaboration and Co-operation

There are two stages of intricacies for cobots working with humans namely Collabora-
tion and Co-operation. Humans and cobots are meant to collaborate in work. This
mean they must work in a common space but not on any one task physically together.
The other property is co-operation and this is a more refined stage which all cobots
may not have this feature. This means human and cobot work on the same module of
machine at the same time in parallel, and both the human and cobot are in motion.
This is achieved not only by pre-programming some paths for cobots and humans but
also in real time which is explained in next point.

3.4.3 Real-time and Presence Acknowledged Collaboration

The cobots are meant to work alongside humans safely. The capability of real time
monitoring and decision making is imperative to a cobot. This mean the cobot should
be able to detect and track human presence and motion in real time. A cobot must also
have decision making ability upto some level to respond to human changing position
that enable it to stay at a safe distance from human movement. This must also give
robot ability to alter paths in real time for its intended motion.

This is a part of robotics that is not very well developed and this forms basis of
self-driving cars which has not become possible in real world usage but is also evolving
very fast.

3.5 Accidents Due To Malfunctions and Consequences

Traditional robots were used in industry setting in the past where humans operated
them and sometimes worked alongside them. But there have been many cases where
the safety of human is compromised in all areas where robots are present. And this
has also cased many accidents and some of them very terrible causing grievous injuries
and even deaths in many cases. Even during development of cobots there have been
accidents for example many prototypes of self-driving cars have failed to provide safety
to other cars and people in proximity on the road. It is safe to acknowledge that this is
a big issue with cobots and there are problems present here.

There is always an element of risk in human-cobot interactions. The danger arises
when a human may get hit by the robot in motion or robotic arm in motion. A human
may also get trapped between robot boy or arm and an wall or iron grill in vicinity.
There are many types of hazards that are identified and they maybe dangers caused
mechanically i.e faults in the machine, electrical shocks to human body, overheating
components causing burns and many more hazards which maybe combination of
these. The hazards are studied carefully and robots continuously evolved to make them
handle risks and this makes them safer. But it is also necessary to acknowledge that in
real world there are some faults that can always happen which may not always be due

16

to the robot itself but due to wrong operation of robots or due to abuse [5](Chapter
4). Some of them are recognized to be -

3.5.1 Mechanical Failure

Robotic mechanism is made up of components like motors, actuators, connectors and
sensors. These can malfunction and may directly or indirectly cause safety issues. A
classic example is wrong readings sent by sensors to processor causing it to make
a wrong decision. This may cause consequent failure of more components or make
them behave unsafely [28].

3.5.2 Electrical Anomaly In Components

Robots are made up of electronic components like wires, circuit boards, micropro-
cessors which age and may malfunction causing robot to behave unexpectedly and
unsafely. The insulation material may wear out causing short circuits and heat damage
to components [28].

3.5.3 Malfunctioning Software

Software is essential to modern day robots and this need programming. Code in any
language always have bugs and more so it may fail altogether and this may cause
robot to behave unexpectedly and unsafely. The problems come in all shapes and
sizes ranging from robot shutting down unexpectedly ,to short circuits causing heat
and even fire risks. Thus the set of instructions governing robot use should be perfect
for using use cases they are built for but there are always chances of issues coming
up after long time use. One of them maybe hardware is superficially compatible with
software instructions [21].

3.5.4 Human Operator Errors

Robots if used in unintended use cases or experimented with beyond their capability
can malfunction. A malfunctioning robot is an uncontrolled robot and thus can be a
huge hazard for human life. There are some veto power humans have over robots to do
things for them in their own way, but this may logically and hence technically contradic-
tory leading to very unsafe situations where critical materials are handled for instance
uranium in a nuclear reactor. A classic example is Chernobyl Nuclear Power Plant
accident which was caused entirely due to operator errors [31]. Machines are built with
applying functionality in mind and not to handle a combination of all use cases and this
always make it possible that there may arise situations robot can go against itself or
the operator. This is usually caused due to untrained engineers, operators, and users.
These people may not be aware of effects of their actions causing machine to fault [15].

Robots are continuously incorporated with artificial intelligence features making
them safer every day but this is a subject of research which is continuously developed
and it is not possible to make a robot equally intelligent to a human being.

17

3.6 Making Robots Safer And Safe Deployment Practices

Collaborative robots or cobots are all about latest technology trend that is gathering
pace with the advent of all new technology coming up in various fields like self driving
cars and manufacturing in factory supply chains. The technology is itself developing
and so are its components that can be used interchangeably across industries to
develop an ecosystem of new age artificially intelligent cobots at an affordable price.
This technology offer amazing advantages as they can safely work alongside humans
and provide cost and time benefits that is hard to beat in industry setting where cycle
time and productivity are key issues [27].

As was mentioned before that cobotic technology is still evolving and developing
and assuming it to come at a level where they behave like a living being may take more
decades of time and the example is self driving cars that many prominent organizations
are working on but have not been able to successfully integrate that finesse and level of
safety so far. There have been accidents with attempts to integrate artificial intelligence
in to cobots and using machine learning to train the cobot with experiences and then
implement this with assured safety or at least equal to a level of humans decision
power. This means that companies are spending large amounts of money to develop
such technologies and help them evolve. All because the accidents can be serious and
can cause injuries and loss of human life.

There are causes of accidents using robots at workplace or industry setting. Robots
were made to be fast workers and also powerful to do tedious tasks which means in
most cases the control surfaces have substantial amounts of torque. This can cause
injury to a human with just one strike and there may be various situations that can
develop leading to an accident and thus hazard to human life and also may cause
financial costs and medical attention. There are situations when even non functioning
robots may cause incidents and hazards. Example is when a robot may malfunction
when itis being overhauled for maintenance. There may be a worker doing overhauling
when it may react irregularly and cause serious hazard to life of worker. Or there can
arise a situation when a robot may be faulty suppose due to a motor issue and the
worker may have to stand in the path of robot movement and thus if he fiddles with
the motor and it may start running then worker can be hit with robotic arm and cause
injury [40].

The accidents caused by robots can be classified based on the type of dangerous situ-
ations a human may end up in with the robot. They are described in the following cases.

A human worker maybe crushed with arm motion of the robot or a human may get
trapped in a situation where the robot may move to a point and this is where there is
no outlet for human to escape. This case may arise when a human gets trapped in
between a wall and the robot arm for instance. Other times a robot may directly hit
a human thus causing collision. There maybe other random safety situations arising
when a robot and a human are present together in a common space like heat burns
or electric shocks.

The above listed hazards are minimized by: [20]

- enforcing strictly pre-mapped environment and space for the cell of cobot
- strictly followed operational routine

18

- authorization of machine operators, maintenance workers and programmers
- speed limitation on movement of control surfaces in presence of human
- emergency stop function.

19

4 STATE OF THE ART

This chapter introduces and describes the technology and tools used for modeling
and programming in this thesis work and this forms the state of the art for this thesis.
In this section, firstly a basic introduction to the technology of task is given and this
is related to what is being tried to be accomplished in real world and then following
section describing first, the state of the art for theoretical models designed and then
technology for the programming and related tools are described in the second section.

4.1 Motion Planning And Simulations

This robotics project revolves around the idea of motion planning. It is about design
and implementation of a model based architecture for cobotic cells. The basic idea
is that there is a robot which has to cohabit with humans and it is an effort to make
it real world intelligent and this means it has to work in real world where obstacles,
objects and humans are present. Accidents are imminent and hence the case study
is about building intelligence in robot to deal with obstacles, thus enabling robot to
provide safety for cohabiting humans.

Using motion planning, tasks are accomplished by the robot and safety provided
and this is starting step of building theoretical models for motion planning known as
application model. Similarly world model is designed as a complete visual model for
world of robot as well as safety model is designed as a theoretical model for safety
of robotic system. All these are also programmed and described more objectively in
later chapters. But for now only tools and technologies used to design and program
them are described in the following two sections respectively. Firstly, models and
their need is introduced and then techniques used for visual depiction of models is
described. Here a few of the optional depictions are talked and described and then the
one selected for this thesis is described for each of the models. Secondly, technology
used for running the program made, i.e. to implement these models is described [16].

4.2 Modeling - Explaining Choice of Design Depictions

This thesis uses the concept of designing architectural framework for human and
robot cohabitation. For this model based cobotic cell design is used. Thesis work tries
to find correct diagram depictions for all three intended diagrams which are world

20

model, application model and lastly safety model. For this the concept of model need
to be explained and also then why we need models and the various types of models
along with the chosen models for all the three concepts of application model, world
model and safety model.

A model can be described as an abstraction of real world or a system, focusing on
some specific structural and behavioral properties, which are then expressed in a
syntactical and semantically defined language representation [8]. There are various
types of models which use different levels of abstraction. Using right level of abstrac-
tion is critical and it usually defines the granularity of the model and the complexity
it expresses. There are usually always some details that are abstracted and some
highlighted. There are various techniques of model construction types and some of
them are object oriented models, process based models and hybrid models. These
models thus help to visualize the structure of a system and hence make them an
essential tool. A brief description about the types of models follows.

Object oriented models have developed as a modeling paradigm, after being acting
as programming paradigm. Most basic example is UML diagrams. The second type
is process based models, they are more formal diagrams which are used to express
domain specific and custom properties. Example is petri-nets and bigraphs. The
third type of model is hybrid models. Some properties of safety cannot be sufficiently
described as discreet models but as continuous dynamic models. Thus this model com-
bines dynamic, discrete and continuous modeling languages. Example is hybrid-petri
nets. Various design depictions were considered and after contemplation following
depictions were selected.

4.2.1 Unified Modeling Language (UML) Diagram For World Model Class
Diagram

This thesis work includes extensive research on the UML Class Diagram and its features
and how they can be used. Then a few of tools used to construct UML Class diagrams
are described.

Unified Model is a language used to appropriately formalize the static structure of
a project using classes as building blocks. This modeling is most basic depiction of
object oriented modeling and data modeling. UML class diagram describes classes,
attributes they have and functions used to implement them, and show how the objects
of these classes are related. This model cohesively describes the data contained in a
project and how it all is related together to produce desired functionality [13] [19].

The class in this diagram is the basic unit. The class is an almost exact depiction
of real object oriented class and contains three sections, first being the class name,
second is the section for attributes i.e. data variables and their type held by the class
and third section describe the operation, thus holding the methods. The UML class
diagram can be extended using state machines which is described a few sections later
to describe another model known as safety model and i.e. it is based on extension of
UML class diagram. Here is depiction of a typical class in a class diagram in Fig.4.1.

There are various types of relation that connect classes together and their usage
depends on complexity of the project. Each type of relation is described by a unique

27

Figure 1: The Class Icon

Class
Attrikbute

operation()

Figure 4.1 A typical class structure in UML class diagram Image

Source:https://sites.google.com/site/revasolution/techhome/uml/clsdiag

Association

—|> Inheritance
_____ Realization /
D Implementation
—————— > Dependency
——< > Aggregation
—‘ Composition

Figure 4.2 UML Relations Image Source :

https :// en.wikipedia.org/wiki/ File : Uml_classes_en.svg

symbol of connection. Few of the relations are dependency, association, aggregation,
inheritance and composition as shown in the Fig 4.2 and described in sections later.

(A) Dependency

22

The dependency relation is marked by a dotted arrow. This implies a one-way
relationship between two variable. It means that one variable is dependent on
the other. If value of one variable in server changes then the value of variable
dependent on it also changes on client.

Association

An Association means a family of links. This is marked by a bold line arrow. It
means a static relationship shared between objects of two classes and this re-
lates the classes belonging to a family. Any number of classes can be related by
association relation.

Inheritance

Inheritance is another relationship. This is a property where in all characteristics
i.e. variables and functions, of a class are adopted by another class as well and
they are known to be related by inheritance. The class adopting the properties
is called as the child class and the class from which it adopts them is known as
parent class. This is very commonly used relationship in class diagrams. This is
marked by a bold line arrow with hollow tip.

Reserve

o Inbe zer = 000 .
veserveDate: Dare Prodnet
alarmDate. Drate 0.n 1

userStore

atate: Intex N 1d : Tteger
getr(ad ; Totegerh. Uken L u:-‘-l\er_
adil{i: Taerh alwon
Rk " wew e Uzer, o Froduct) Beserve
1 0.n
’
da
1 ; >
Urer reserveStore prodnctStore
1 Infezer
get(1dl: Integer): Feserve zet{id: Integer|: Product
on addir : Fezeive] addip : Product}
rezistered 1 L
1 1
Local

reserve(1dUser: Infeger. 1dProd: Iuteger)

Figure 4.3 Example of UML Class Diagram Image Source :
https :// www.researchgate.net/figure/Example—of-a-UML-Class—Diagram_fig1_22121

(D) Aggregation

Aggregation is one of more refined version of association relationship. Here
functionality of one class is dependent on another one, i.e. if one variable do not
exist then another variable having aggregation relationship is also not able to
exist or be used. It is depicted by a line and tip having a quadrilateral.

Here is an example of a typical UML class diagram displayed in Fig. 4.3.
Tools used for UML class diagrams is Online Visual Paradigm. This is an online editor
to construct UML class diagrams.

4.2.2 Business Process Modeling Notation (BPMN) for Application
Model

Business Process Modeling Notation is used for Application Model [38]. This is a design
depiction used to construct application workflows and processes. BPMN provides
a standardized bridge for the gap between the business process design and imple-
mentation. A Business Process Model is a network of graphical objects, which are
activities(i.e. work) and the flow controls that define their order of performance and the
flow. This diagram is made up of elements and there are many category of elements
but the thesis work uses two major group of elements known as flow objects and
connecting objects. Here in Fig 4.4 is displayed an example of BPMN.

The flow objects contain Events, Activities and Gateways and the connecting objects
have Sequence Flows, Message Flows and Association. They all come together to give
desired form to the process workflows. Here in Fig.4.5 is image of all components of
BPMN.

A short description of all components is as follows.

23

Events

O® 0O ® 00 @

Start/Begin Message Timer Error Link End/Stop
Activities
B Tt H
!]
L "
Activity Sub-Process Transaction Call
Gateways
£
@ @
Exclusive Event-based Parallel Inclusive Exclusive Parallel
Event-based Event-based
Connecting
— O— —— a. EEEE NN
Sequence Flow Message Flow Association

Figure 4.4 Components of BPMN Image Source
:https://study.com/academy/lesson/business-process-model-and-
notation-process-examples.html

—+—0
e

Aty
s

Assgnment
& . @& &)
= s Check Mttty — B . — e

Travel Agert
gg
Sﬁ
@
R .
L
Py PH
1
]
]
1
]
I
1
-
2

Caih Drivar

Figure 4.5 BPMN Example Image Source :
https://www.conceptdraw.com/examples/taxi-booking-process

24

(A) Events

An event is depicted as a circle. This is something that marks something hap-
pening during the course of workflow. They affect flow of the process and have
a trigger point or an result state. There are three types of events, and each of
them show stage of the event happening and also effect the flow. These are
start, intermediate and end events as is marked in the Fig 4.5.

(B) Activity
Activity is depicted by a rounded-corner rectangle. It marks work that is per-

formed. There are many types of activities but the main are Sub-processes and
tasks as shown in Fig 4.5.

(C) Gateways

A Gateway is shown by diamond shape and is used to direct the divergence and
convergence of the work flow sequence. It governs traditional decisions, as well
as the decision when to split, merge, and join paths.

Here is description of Connecting objects also known as connectors. They are
connected together to create structure and demonstrate flow. Three connectors
are described below.

(D) Sequence Flow

A Sequence Flow is shown by a solid line with a solid arrowhead and this shows
the order of the activities that will be performed in the workflow process.

(E) Message Flow

A Message Flow is depicted by a dashed line with an open arrowhead and it is
used to mark message transfer between two different processes. Depicted in
the image.

(F) Association

An Association is used as a dotted line with a line arrowhead and it is used to
associate data, text, or miscellaneous artifacts with flow objects. They are used
to show the inputs and outputs of activities.

All these components come together to let users create a precise, detailed and
desired form of expression using BPMN.,

4.2.3 Unified Modeling Language State Machine for Safety Model

UML state machines are finite state machines expressed in the form of unified model-
ing language notation. The concept associated is about organizing the way a process
works, such that an entity or each of its sub-entities is always in exactly one of a num-
ber of possible states and there is well-defined conditional transitions between these
states.

Today almost all software system are event driven. These systems can be external
or internal events like a mouse click event. After the event is handled, the system
goes back to waiting for another event. This describes the concept of finite state
machines. The system can be in only one state at any given time instant. The system
when changing state is known as state transition. When finite state machines are
expressed in the form of UML diagrams then they are known as UML state machines.
They use same components as are used in UML class diagrams.

25

Self Transition

State r- Stata? "\ﬂ)
= :
Event Trigger/Action |. Final State

Event Trigger/Action

Event Trigger/Action

[Stated]
Initial State

Figure 4.6 UML State Machine Image Source : https://www.visual-

paradigm.com/tutorials/how-to-draw-state-machine-diagram-in-uml/

4.3 Tools Used

4.3.1 Setup Environment Using ROS To Run Services, Motion Planning

In MOVEIT and GAZEBO For Simulations and more

(A) ROS'

ROS is an opensource robot operating system. ROS is not a regular OS, in the
sense it does not provide regular functions of OS like process management and
scheduling but it provides a different set of services and acts like structured
communications layer above the host operating systems. ROS is associated with
existing frameworks of robots, with brief look on available application software
which uses ROS. As robotics is a wide field and continuously a topic of research
and a growing one, generating code for ROS is not easy. There are different
category of robots available with high degree of variation in hardware, thus not
enabling programmers to reuse code or develop on modules. In addition the
total amount of code needed is too much for regular programmers, as it needs a
deep stack starting from driver-level software and continuing up, and also needs
abstract reasoning, and more. The required breadth and width of expertise
needed is far more than the skills of any single researcher and robotics software
architectures must also be able to be integrated with large-scale software. To
address to these problems and make life easier for a regular programmer, many
robotics researchers, have constructed huge number of frameworks to handle
complexity and address to rapid prototyping of software for experiments, thus
resulting enabling research in industry and academia. Each of the frameworks
were made keeping in mind a purpose, maybe for a response to perceived
weakness of other available frameworks, or to place importance on dimensions
which were seen as most important in the design process. ROS, the framework is
designed not without trade-offs and prioritizations made during its design cycle
which were essential to do in interest of practical uses. It is still thought the trade-
offs will serve well to purposes of large-scale integrative robotics research in
a wide variety of uses and cases as robotic systems grow ever more complex [30].

Thttps://moveit.ros.org

26

Activities % rviz v Mi 04:13

moveit.rvizt - RViz
é Eile Ppanels Help

{yinteract | %< Move Camera

*% I Displays. S (%]

~ ¥ MotionPlanning v

» v Sstatus: Ok

Robot Description robot_description

Ql

Planning Scene Topic move_group/monitor..
.l »_Scene Geometry

= | SceneRobot &
Add
- % MotionPlanning - Trajectory slider [*]
‘Waypoint: 0 o
3 MotionPlanning %)
- Context | Planning | Manipulation = Scene Objects = Stored Scenes = Stored States * |»
Commands Query Options.
g Plan Planning Group: Planning Time (s): | 5,00
panda_arm ~ | Pplanning Attempts: | 10

cL Planand Execute | StartState: Velocity Scaling: 1,00

(KR EDED

<current> ~ | Acceleration Scaling: | 1,00
Goal State: Allow Replanning
”’ Clear octomap <currents> - Allow Sensor Positioning
Allow External Comm.
Path Constraints
R\[‘u Use Cartesian Path
None 7| W usecollision-Aware IK

Goal Tolerance: 0,00 Allow Approx IK Solutions

< RvizVisualToolsGui [x]

Next Continue Break Stop

Ml Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options. 29fps

Figure 4.7 MovelT / RVIZ Screenshot

(B) MovelT 2

MovelT motion planner was used for motion planning as this software lets users
alter many different parameters of the robotic components and helps to create
case studies in a world environment for robot Panda. Here a series of joints and
poses is set and then a trajectory for motion planning, which is then used to run
in a real world simulator. Its main purpose is to motion plan and introduce an
obstacle which is a cube box or which can be a human being and the motion plan
is about moving the robot arm around the obstacle to reach a position which
was decided earlier in the motion plan [25]. There can be as well other motion
plans that are simpler and more complex

This is motion planner used to plan the motion of robot Franka Panda in this
case. This connects to simulator for running real world simulations using the
Robot Operating System (ROS) and launch file. Here is screenshot for Rviz.

When MovelT tool is started for the first time there comes up an empty world.
On the top there is option Panel which can be clicked to see a drop down menu
and from there some of the panels can be selected which need to be used. The
motion planning enables user to set various field parameters and their values,
like some of them are Fixed Frame, Robot Description, Planning Scene Topic,
Planning Group and Planning Request and more like Planning Trajectory and
they can be explored further using online tutorials provided by ROS, thus adding
to a lot of functionality and flexibility?.

Fig.4.7 This is what Rviz motion planner looks like. The robot is stationary in this
case and can be moved using arrows displayed in different colors to attempt mo-
tion in different directions. The 7 joint of robot Panda give it immense flexibility
but there maybe some motions which are not possible and in this case it is made

https://moveit.ros.org/
3https :// ros—planning.github.io/moveit_tutorials/doc/ quickstart_in_rviz/ quickstart_in_rviz_tutorial .html

27

Activities

F

> gazebos.desktop ~ Mi04:13
Gazebo

ile Edit

e -7 - | eel|#H%Z | nE|k0|E,

Gul
Scene
Spher 0!
Physics
Atmosphere
wind
odels
ights

Property

n Steps: 1+ Real Time Factor: sim Time: Real Time: Iterations:

Figure 4.8 Gazebo Screenshot

obvious while using MovelT. The Displays on the top left shown are showing
various different parameters which Rviz can help tune and change. Some of
them are Robot Description and Planning Scene Topic and there is Plan and
Execute button which can be used to run the plan once the arm is moved to
a new position termed as final position. The plan can be executed in Gazebo
simulator by clicking Plan and Execute button and the trajectory is visible in the
Rviz and then almost immidiately the Gazebo simulator executes the motion.

Gazebo *

Gazebo simulator was used which is a simulator to run the motion plan from
MovelT. This lets users see if the real life simulation is possible for the conceived
motion plan and trajectory visualized in a visualization tool like MovelT. Gazebo
also has additional features which can add and alter real time parameters to its
simulation like altering torque of joints to see how robot reacts in varying real
world conditions [32].

This is a simulator which simulates robot motion with real world parameters
tuned to check if the motion plan is executable and feasible in real world. Here
is how the Gazebo simulator looks on screen.

In this thesis work there was no need to explore functionality or fiddle any of
features in Gazebo. It was used to visualize motion plan of Movelt and to check if
this is real world feasible in Gazebo. In this tool it is possible to tune a lot of real
world parameters and the ones related to robot Panda are torques on joints but
this was not required.

(D) Clion IDE >

“http://gazebosim.org/
Shttps://www jetbrains.com/clion/

28

Activities €2 CLion ~ Mi 04:08

robot_models [~/panda_gazebo_workspacesrc/zerc] - ../sr¢/robot_models_node.cpp

File Edit View Navigate Code Refactor Build Run Tools vCs window Help
zero - robot_models_node|Debug ~ » & G £ G Gitt v =1

AL

sseqereq () O

&s g = project ~ © T & —) - obstaceh - i quaternionh i robotfpeh < i humanspace.h < i worldobjecth & robot_ models node.cpp
£ araspobject 02;
& zero hand 03;
: googletest test humanspace o4;
izero _gazebo_ 2
) joint osa;

_ cmake-build-debug Joint osb;
L4l launch joint oSc;
= launcher.launch joint 03d;
joint ose;
P src joint o5f;
" datalink joint oSg;

32 abstractobject.h obstacle o6;
% graspobject.h robot o7;
= pandh robotfpe o8;
i humanspace.h worldobject 010;
X 5 jointh
w- obstacle. o5a.name = "panda_link1";
g i quaternion.h o5b.name = “panda_link2";
cL

4 robot.h “panda_Link3"

3 robotfpeh
#world.h 05
i worldobject.h
;.gitkeep

me = "panda_Link7"
053.0r2 = {1.2,5.3,6.5

3,6

o 2. robot_models_node.cpp
] 2 package.xml
E
3 A CMakelLists.txt
~ .

4 packagexml !

i README.md 05b.p1 = {14.7, 11.3, 6.5};
£ » Il External Libraries 05C.p1 = {4.9, 13.8, 7.7}
= 05d.p1 = {2.4, 12.5, 1.6};

 Scratches and Consoles oSe.pl = {3.1, 16.2, 5.3};
& 05f.p1 = {11.5, 15.4, 3.4};
main
=6 TODO M 2:VersionControl B Terminal A CMake Q EventLog

[a] 76:35 LF UTF-8 4spaces Es ¥ Git:master = & &

Figure 4.9 CLion Screenshot

This is the editor used to write C++ code for the tasks in this project and this
is IDE used to compile and run it. CLion is used to provide many aides to help
reduce the programmers workload and automate the process of adding code
by providing many suggestions using inbuilt libraries and showing connections
among variables. In addition it points out logic errors in advance and helps
mitigate errors and warnings that may come at a later stage by improving the
quality of code while still in construction process. CLion IDE can be started by
opening a terminal in linux and typing command "clion". The Fig 4.9 shows how
CLion IDE looks like.

CLion window shows the complete project structure on one side and each
opened program on right side under tabs, making it easier to understand the
code and make things easy to lookup. The window in second half of screen is the
console output window. It shows the errors and command line output. These
are some of useful general features of Clion IDE in addition to many more used.

(E) Gitlab ®

To keep the constructed code safe from loss and to keep it accessible and visible
as a package to administrators and a host of users, the code is uploaded to a
central repository for which Gitlab was used. This is a widely used repository for
students in a university setting.

It shows the projects available under the namespace of account owner and has
a range of features and commands used, which are described in the following
paragraphs. The Fig. 4.10 shows how a typical Gitlab account appears in web.

After logging in to Gitlab account with credentials of username and password, the
users are welcomed to a page which shows repositories available. The groups
and repositories subscribed by the owner user or given access to owner user by
other users are demonstrated here at the page. The top section has tabs "All"

Shttps://gitlab.com/explore

29

Activities ®) Firefox Web Browser ~ Mi20:16

Projects - Dashboard - GitLab - Mozilla Firefox
% [GH W Projects - Dashboard -

© | @ https://git-stinftu-dresden.de * noen =

32 ROS/Tutorials-ROS... % 3 [B Designandimplemen... ® SamiHaddadin-Goog... @ WorldModelFPE-VP... w @ @ % % % 3 LT LanguageTool-Spell...

B+ Seachorjumpto a DM E O @

 GitLab update scheduled for Friday, October 16th between 08:30 and 09:00 CEST. If unpleasant, please contact René or Martin.

You wonit be able to create new projects because you have reached your project limit Dorit show again | Remind later

Projects
Your projects 23 Starred projects 0 Explore projects Filter by name Last updated
Al Personal
Nikhil Ambardar / Thesis Template @ Maintainer
0 Yo 1Mo Do Updated 2 days a
T eTeX project template for our students writing their BA/MA/DA theses ® *0 V0 no o paated 2 days ago
7 Nikhil Ambardar /zero @ | Mainainer *0 Y0 M0 DO Updated 6 days ago
p CeTI/ROS/ panda_gazebo_workspace @ e © %1 vs o 02 oot ok ago
Aworkspace to automatically deploy a panda simulation. ¢
N Nikhil Ambardar / Nik_MThesis_RobPanda @ Maintainer *0 Y0 N0 Do Updated 1 week ago
Maint:
p NiKnil Ambarcar/ panda gazebo_workspace @ Variarer ® %0 vo 1o oo Ut 1 ek ago
Aworkspace to automatically deploy a panda simulation.
Rept
M CeTI/ROS/mpmacps2020 @ Reporter ® *1 Y0 1o Do Updated 3 weeks ago

Use case of the paper ‘Connecting conceptual models using Relational Reference Attribute Grammars®

Figure 4.10 Gitlab Screenshot

and "Personal". "All" signify all projects which owner user has access to and the
"Personal" tab has repositories forked by the owner user only. The owner user
can give access to other users for their repositories too.

Gitlab is a tool that allows user to create a fork from a parent repository and
be able to use it as a personal repository. In cases when the personal fork has
become corrupt or cannot be used anymore, it can be re-forked from parent
repository. Gitlab also allows construction of more than one branch of the
forked repository to solve this problem, so in cases when the master branch of
repository is not usable anymore, a new branch can be created and updated
with. This is also useful to maintain different versions of the code and this is one
of many features of Gitlab this thesis used. Forking can be done by clicking on the
parent repository and then clicking on Blue tab marked as "Clone". Then appears
two options "Clone with HTTPS" and "Clone with SSH", one of link is which needs
to be copied. The command "git clone" can be then used on terminal, appended
with the copied link from Clone tab to fork the repository to local machine.

After forking from a parent repository, work is done and added to the folders
forked from repository and used on local machine. But they need to be uploaded
to Gitlab at regular intervals to log the progress and keep it safe from loss on local
machine. For this, the folder is to be uploaded or pushed from local machine to
the Gitlab account for which commands have to be used from terminal of local
machine. A short description of commands used to achieve this are stated below.

Many commands used are general git commands which mostly include "git
status", "git add .", "git commit", "git fetch", "git pull" and "git push".

First of all to use git upload in the project, user must go to the project”s parent
directory in linux and right click to click on "Open In Terminal" option to open
a terminal which is already in parent directory of project workspace. Or else, a
terminal can be opened and "cd" command can be used, suffixed by the path
to parent directory of workspace after a space. This "cd" command can also be
run in steps and this changes current directory to stated, suffixed directory at

30

each step. Using this in steps, users can switch to the directory that need to be
pushed in project.

Second step after switching to the directory to be pushed, is to see its status on
git and this can be done using command "git status". This command shows what
are the changes since last commit or what is changed and new.

Then command must be run to add all changes to git and this is done using
command "git add .". This adds all changes and new files to git to be used as
desired. Then ideally once again status should be checked to see if the files
added are now shown in green color after adding them to git. This can be done
using "git status" command once again. All files must now appear in green and
this shows they were added to git since last add command. This step alternatively
can be skipped.

Then changes added must be committed and this can be done using command
"git commit -m "xx"". The xx is a commit message and this text is used as a
markup. Any text can be used here instead of xx. This command commits
changes to git. Then "git fetch" command can be used to see which is the branch
fetched. This is to confirm if the commit is on correct branch.

After this command, command "git pull" can be used to see if there are still
changes between local git version and what is in online repositories version.
After this once again status must be checked. If there is nothing to add, then all
is well but we can once again use git "add ." command to see if anything more
can be added. At this point "meld" tool can be used to match the changes in file
i.e. if there are any, between online git and commit but this may not be needed
for regular uses and only in cases when there are any discrepancy differences
due to irregularities between pushes. Then "git push" must be used to push all
changes to Gitlab. This prompts for user to enter username and password and
after this stage all changes are pushed to Gitlab account folder. Thus this shows
a completed git command line push process.

(F) Erdal's Repositories ’

There are few startup repositories provided by Erdal to use by including as pack-
age in workspace and they are essential to run robot Franka Emika Panda using
ROS on local machine. The robotic framework package has libfranka and this is a
C++ program library, frankaros which is a ROS interface with ROS Control and
Movelt integration. The links above contain all repositories that can be used for
robot Panda including the ones that has been used by work of this theses.

"https://github.com/frankaemika/ , https://erdalpekel.de/?p=55

31

5 CONCEPT

5.1 Theme

This section defines all the concepts associated, discovered and learned with the
work of this thesis. The main idea begins as described as a real world with a robot
present.The real world consist of robot Franka Emika Panda present. The robot has
an arm having seven joints. There can be one or more humans present in proximity,
along with one or more obstacles which are also present in the proximity in real world.
The base of robot is fixed and the arm is capable of motion and there is a gripper at
the tip of arm, which need to pickup and then release an object to complete a job. The
robot has to be programmed to move and not just move the arm but do this safely
i.e. by detecting obstacles / humans around the robot continuously and responding
appropriately, by evading the obstacles to reach final position and thus complete the
pickup and release job. There can be other jobs like piercing a balloon ball as depicted
in the Fig 5.1.

This section starts with a hypothetical situation to explain the need for models
and the concepts associated with implementation. The robot uses a motion planner
software to follow a preconceived plan which is visualized and that is to move arm
and pickup an object and then move arm again according to already planned motion
trajectory and release the object at a desired location thus completing the task. Image
describes this as shown in Fig 5.1. So far this plan is only about doing the task, but
sans the idea of any kind of obstacle or human which can cause a hindrance to already
planned motion.

The activity until this point can be used to train the robot and this motion trajectory
job can be re-executed by the robot using the inbuilt teaching capability feature of
robot which lets the robot learn a series of pose and actions and replicate the same
trajectory and grasp actions, but then a real world feature is added to robot and this
is about adding essential safety feature. This safety is achieved by altering the planned
trajectory right at that time instant when sensors detect obstacle in the path of robot.
At this time, robot uses a new trajectory to move its arm around the obstacle, to reach
a coordinate position around the obstacle to a point in pre-decided and followed
motion trajectory and then continue regular motion from there on-wards to complete
the motion and task. After the motion planning part a simulation software is used to
see if motion trajectory correction is feasible and working in real life or not and to see
how successful it can be [7] (Chapter1,Chapter4).

32

= o

(HEEZT

Figure 5.1 Robot Panda Picking Up Object Image Source :
https://blog.generationrobots.com/en/list-of-criteria-to-look-at-before-
buying-a-robot-arm/panda-franka-emika-care-robot-arm-2/

This is a model where human / object - robot interaction operation is depicted, as
shown in Fig 5.2.

5.2 The Models Designed

Tasks in thesis work are to design three models namely world model, application model
and safety model using modeling tools and implement them in a C++ program. This
sections begins with describing each of these three models.

(A) WORLD MODEL USING UML

The world model describes the world of robot Panda in general i.e. about what is
inside the surroundings of the robot apart from the robot itself and then features
and attributes of all components in this world model. In technical terms this is
the world of the robot that exists in real world and components in this real world
are the robot FEP itself with its arm, the obstacle like a human or an object and
a cube or ball which can act as an object, that can be picked up by the robot
arm. Fig. 5.3 and 5.4 shows the designed World Model class and object diagram
respectively. These were designed using UML diagrams.

Unified Modeling Language (UML) class and object diagrams were constructed
for world model using the web tool named Online Visual Paradigm. The UML
class model is used to derive the objects and depict in the UML object model
diagram [2].

33

Figure 5.2 Another Image of Robot Franka Emika Panda Image Source : Panda Skills
Sensitivity Video Screenshot

Figure 5.3 World Model UML Class Diagram

link01 link02 link03

Figure 5.4 World Model UML Object Diagram

34

This world model class diagram has been designed to contain ten classes. The
main parent classes are World Object and World, present on top most level. The
classes Robot and Abstract Object inherit from one class and at same time are
aggregated with another class. Relation of association and aggregation, is used
where classes need to use data variable from other classes and in cases if class
variable must depend on other class variables for it to exist, respectively.

Spedcifically this means, aggregation relation is used in a case where if the class is
not involved or used, its child classes and their variables cannot be instantiated
or used. Association relation is used where one class is related to another just
to be able to use the other's variables. Both relations use pointers in program
implementation in C++.

(B) APPLICATION MODEL - BUSINESS PROCESS MODELING NOTATION USING MOD-
ELIO

Business Process Modeling Notation(BPMN) for application model using Modelio
tool!, was chosen for application model. The designed application model is
depicted in Figure 5.5 [38].

BPM notation was deemed to be a correct choice to show application process
workflows as this shows segregated cells, called frames for all the entities present
and this depicts each component of the world model diagram. The notation
then allows to depict the relationship and connections between the logical com-
ponents of the frames and shows their flow which have a comprehensive and
logical consistency among cells. This is achieved using features of BPMN like
activity, gateways and events which form as logical components. It uses start
and end event states to mark positions for start and end and then “if" conditions
are used as flow lines with process events and intermediate events to construct
application model.

(C) SAFETY MODEL DEPICTION USING UML STATE MACHINE

UML State Machines are used to construct safety model. They are an extended
version of UML finite state machine. The Fig 5.6 shows the safety model con-
structed using the tool Modelio.

The start and end events denote, the process starting and end states. The state
machine can, at any point in time be only present in one state. The robot mo-
tion begins at point of start event. The transition T1 is about human presence
and activity of human presence is marked, assuming there is already a human
present detected in the proximity. The robot motion had started but now MovelT
is requested to provide a new motion plan around the human obstacle, this
is marked by transition T3 and once a new trajectory is obtained the motion
starts continuation around the human and once again robot reaches a point
in original motion plan and then it keeps checking for human presence and
this is marked using if condition "Detect Human", and if detected by sensors
during the continuing motion plan. If the human is detected then once again new
MovelT trajectory is requested around the human and the loops keeps running

Thttps://www.modelio.org/

35

USING M%EIT IRVIZ
e N TRAJECTORY e eE=D
z - ———» TOFINAL
< YES CORRECTION e ON
= DETECT[HUMAN ?
EACH SEC
T
USING MOVEIT / l ‘ NO
RVIZ i
i %
= STARTARM |— > _P_pﬂ,o
z MOVEMENT
Start SENSPR IP JOING FINAL POS? End
DETECTION
e
Using Rviz / MovelT
EACH SEC :
r'd
o N
0 YES MOVE -
= PICKUP PROCEED TO
ol Hg;ﬂ%g? ¥ omiect [P/FINAL POSITION
a
DETECIT G.0.?
3 C 4
o
O NO
0 EACH SEC USING MQVEIT / RVIZ
=
< YES PROCEED
& @ CORRECT | » TOFINAL
g » TRAJECTORY BEeTION
DEIECTE)BSTACLES -
NO
Figure 5.5 BPMN Application Model Diagram
T3 MovelT For Trajectory
Tl HUMAN | No HUMAN T2
PRESENT ABSENT
Yes

Detect Human?

Figure 5.6 Safety Model - UML State Diagram

36

to check for human presence until a state is reached where human is absent
and arm moved to a position around the obstacle at a point where it can begin
original motion plan. Once at this point, human absent state is achieved the
original motion is proceeded to be completed and marked by final transition T2
proceeding to the end event finally.

This model can be extended in more detail in the future using this concept along
with a different notation that can make the cases more detailed and thus more
extensive. MAPE-K loops can also be used to denote the safety of a system and
in addition computer generated graphics can as well be used to depict the safety
model of a system, this enables the research to not get restricted to just BPMN
notation for safety models of a system [38].

There has been extensive work done to incorporate safety into real world robots
particularly from Sami Haddadin. The work has built the robot with improved
technology and making the robot understanding safety i.e by making them softer
in operation when operating, to prevent any physical collisions by embedding
injury knowledge into controls like emergency stop. These efforts also result in
using reduced force when in human proximity and other efforts are to make
robot surfaces softer and for this extensive testing has been done on injuring
pig skin to study effects of injuries that can be caused by robots [37].

5.3 Programming Of Hardware And Software Components -
Purpose And Concepts

In hardware, there exists the Franka robot which has an arm and the arm has joints
described by J1..J7 . We also then have other objects in the world namely obstacles,
which can be one or more human and then non living ones like a cube ,box or ball. In
addition there are grasp objects which can be a cube or an item to pick.

The robot Panda has motion planning attributes which can be altered. Most of them
are in MovelT which is the motion planner tool described in detail in the last chapter.
The state of robot arm is described by the coordinate position of last joint of the arm
i.e. J7. We can as well alter the many other parameters like torque on the arm in
simulations. The Figure 5.7 shows the robot panda with joints .

In the Software section ROS [30] Z is used which is the Robot Operating System and
catkin builds the workspace. ROS is started using "roscore" command in terminal and
this starts the ROS on local machine. MovelT is then used to do motion planning for the
robot and planning motion around the obstacles. The plan in MovelT is then run in a
simulator for which Gazebo Simulator was used, which is used to replicate real life con-
ditions and run robot inside it. This gives an idea if the robot can perform as planned
and expected in real life with torque on joints or other real world like conditions. To
use MovelT, workspace is built using catkin. Erdal”s repos are used and essential
in the workspace which are franka_ros , panda_moveit_config and panda_simulation,
and they are imperative to build the workspace which contains the node program
designed. These are the repositories used to build the package and thus run the

Zhttps://www.ros.org/

37

joint axes 5 & 6 intercept
non- /

link & < 8 spherical 3 ': ~I2ans
,qhiink 504 wrist T Bt joint S
g ‘w- link 4 LqT joint 6 — & elbow offsets
link 7 ; I joint 4.,,/
; / joint 3
link 3 joint 7 i
link 2 ol
[Joint 2:)1'?" “~___ spherical
linkd & shoulder
link 0 |
J joint 1

Figure 5.7 Robot Panda Joints Image Source : https://www.chegg.com/homework-
help/questions-and-answers/panda-franka-emika-shown-belowis-
innovative-lightweight-robot-intended-friendly-andsafe-hu-g35002486

program using ROS. The basic idea of robot Panda package which is made up of all the
above mentioned tools and software is to execute a real time bidirectional connection
between a workstation PC and the arm of the robot shown in simulator [32].

5.4 Refactoring and Reclassification

The work of this thesis needs the implementation of the concept of refactoring and
reclassification of code created. The code created for the project in the implementation
stage has gone through many phases of construction. These phases are classified as
stages, in these stages code has developed in quality and complexity. The plan with
which code construction had started, was changed and many amendments made for
this, in addition to many extensions in the plan. This made the code very difficult to
understand at some places. Corrective actions were taken which include refactoring
and reclassification of project code. This is a concept of restructuring existing code
while keeping the behavior and functionality of the code as it is.

Refactoring is a concept to improve the design and structure of the software. Few
advantages of refactoring are improved code readability and reduced complexity. This
concept also then helps with more extensions which can be part at a later stage and
to maintain and demonstrate a simpler and cleaner and more expressive internal
architecture of project code. Refactoring can also improve performance by saving
memory and making the program run faster [3] [42].

5.5 Connecting Everything - Simulations

Gazebo Simulator is run alongside MovelT motion planner which help replicate the
MovelT motion plan in Gazebo simulator and thus let user manipulate the robot using
motion plan in Rviz. How is this achieved is as follows.

In the project workspace file structure described in the next chapter, there exists a
launch file. The launch file parameters instructs the tools to be started like MovelT and

38

Gazebo in this case. It is also specified with a program node filename to be launched.
The parametersinclude name of the node file, package name and few other parameters.
The launch file is then run from terminal. This is accomplished in following steps and
after changing directory to workspace folder, command "source devel/setup.bash" is
run after which command "roslaunch packagename launchfilename.launcher" is run,
which launches the node file allowing it to communicate and use values from other
tools like Gazebo. All this runs using ROS and using message exchanges. The node
can then be programmed to listen to frames from simulator and also command the
robot in simulator accordingly or as intended. ROS messages are sent from program
node to simulator and back. This thus gives a brief overview of how everything works
while a detailed explanation follows in the following chapter.

39

6 IMPLEMENTATION

6.1 Introduction

This chapter describes about what has been done in this thesis to achieve the ob-
jectives. This implies all that is practically done and this includes programming the
node using ROS packages eventually and using Latex tool. Also described here is the
structure of both components of the project in steps.

The work involves creating a workspace directory in file system which in this case is
known as panda_gazebo_workspace and installing all necessary software like ROS. A
folder named "src" is created within this workspace panda_gazebo_workspace, which
is then added with other essential repositories cloned as packages, the likes of which
are known as franka_description, sample_applications and panda_simulation. These
are packages which are essential to building the workspace i.e. running the project
and they are provided by Erdal and can be cloned / forked.

Parallel to these packages, a new sub workspace is created, known as "zero" in this
case, which contain variable part of workspace i.e. all the work that is added specific
to constructing and running node programs in implementation step. The "zero" folder
constructed here contains a launch folder which contain the launch files for launching
the project from terminal and in parallel it contains another folder named "src" (not to
be confused with "src" folder created before), which contains the node files constructed
as programs for running implementation in this project. These files are known in this
case as "robot_models_node" for world model, "worldsafety" for all the test cases for
world model and "safetytest" for safety model all having cpp file extension. In addition
there also exist a CMakelLists file with a txt extension in the zero folder, which contains
all configuration for successfully building the project.

The workspace is then built using command "catkin build". This command runs the
essential repositories inside the workspace and also the files in the sub package zero
according to configuration files and builds the workspace to run the node program.
This is all about the structure of the workspace and the packages used to build the
program node.

This thesis work also introduces the concept of writing a thesis in the tool "Latex" [9].

The tool was written by Leslie Lamport in 1980s and is now a freely downloadable tool
for use.This is a plain text editor which has a host of features to write a thesis. The

40

fhome /nikhil /thesis-templatethesis.tex - TeXstudio
File Edit ldefix Tools LaTeX Math Wizards Bibliography Macros View O Help

pat ~ label ~| tny <~ EPESEEKRM 22
ex X back.tex X Bibliography.bib X soatex X conctex X | kimp.tex X evaltex X

» LABELS
@ INSPIRATION AND D.
~ backtex

» LABELS
~ @ BACKGROUND
)

EEEEEEEEEE

(Bibliography.bib}

Eve {
\clearfield{note}

K i ickable but hides ugly boxes
vl{cleveref} % autonatically inserts Fig. X

INSERT
Search Results x

rted: pdflatex -synctex=1 -interaction=nonstopmode "thesis".tex

rocess exited normally

Bl = T enUS . UTFS . Ready Rootithesistex R B R

Figure 6.1

user has option to use markup tagging conventions to define the general structure of
a document which can be an article, book, or letter. The text can be set with different
fonts and enables setting citations and cross-references. This thesis experimented
with two versions of latex editors TexStudio and MikTeX and both were very easy to
produce an output file in pdf format.

Latex starter repository was forked from Gitlab repository on to local machine. The
repository was named as "thesis-template". This contained a structure of thesis plan,
essentially a root ".tex" document known as "thesis.tex" which initializes and connects
other files for different chapters. The editor TexStudio, lets users set a root document
and let users visualize other files. Other files in thesis work were allocated to each of
the chapter thus defining the structure of the thesis and they were contained in one
folder. Common markups were used to write the text of thesis in Latex which include
\section {}", "\subsection{} and many more. Bibliography was set using "Biber" as
this is the latest version for setting bibliography format, instead of the older version
known as "Bibtex" or "BibLatex", and for this there is a separate file for bibliography
identified with a ".bib" extension. The file structure has a root document and other
documents which are included in the root document along with much more details
in root document, and it links the other documents of chapters to the main root
document. All documents have a ".tex" extension. When run, the Latex tool produces
a .pdf file in the directory of thesis repository. This is how typical window in tool for
Latex looks like.

Here is how a Latex root document looks like and short description for each section.

6.2 WORLD MODEL IMPLEMENTATION

This task is about implementation of the designed world model using C++ code. The
program written, described as a node is used to display the values of position and
orientation of robot joints, in addition to world model program implementation which
include other classes and object values to be added to construct world model node
and its features as described previously in theoretical model using UML diagrams.

The program is connected with Rviz motion planner and to Gazebo simulator by

41

launching a launch file which launches the Rviz ' and Gazebo 2 and the node file 3. The
launch file launches all three components and connects them together i.e. the world
model node program and MovelT motion planner as well as Gazebo simulator. The
robot can be moved in MovelT motion planner using the different colored (Red, Green,
Blue, Orange) arrows and once Plan and Execute button is hit, the motion is executed
in Gazebo simulator as well, thus confirming movement of a real robot simulation.

The program code is designed to take values from the robot in Gazebo simulator
and display them in output console. The program also builds the object structure by
initializing values and assigning them values thus constructing the world model class
diagram. So after launching the Rviz and Gazebo using launch file, the program is built
and run and thus builds world model node and displays the position and orientation
values of robot joints as intended in output.

6.2.1 Programming - The Implementation Of World Model

WORLD MODEL - To implement the World Model, files were created each for one of
the classes. They were created as files to be included as header files(.h) in the main
node program called in this case robot_models_node.cpp. Each header file describe
the implementation of one class and its functionalities by using variables which are
then objectified in the main node program. This helps to build object structure in the
main node program for world model.

The main program is used to add objects to the classes and used to input the values
into variables using those objects and then used to run the implementation to display
output.

The following paragraphs describe the modules of the program used in implemen-
tation.

int main(int argc, char** argv)

{

ros::init(argc, argv, "ROSNODE1");

ros: :NodeHandle nodehandle("namespacename");
ros::AsyncSpinner spinner(1);
spinner.start();

...// code continued

}

Here the main function is defined and the ROS node defined and initialized. Also a
Node handle is specified and a spin loop is initiated to start the program.

abstractobject o1;
graspobject 02;
hand 03;
humanspace 04;
joint 05g;
obstacle 06;

robot robotT;
robotfpe 08;

Thttp://wiki.ros.org/rviz/UserGuide
http://gazebosim.org/
3https:/git-st.inf.tu-dresden.de/nikaviator/zero/-/blob/master/src/robot_models_node.cpp

42

world o09;
worldobject 010;
...// code continued

This is an example of declaring objects for all the classes which are included into
the main node file "robot_models_node.cpp", using header files. Here objects are
defined which are later used to input values into variables defined in the classes.
08.h->grippos= {12.1, 14.3, 18.2};
09.c->robname="Robot_FPE";
09.c->of=true;
09.c->moving=false;

..// code continued

This is an example of alloting values to the variables in the classes, included as
header files inside the main program. In most cases pointers are used because they
are imperative to implement association and aggregation functionalities in program.
Following sections describe association and aggregation relationships and how they
are essential in implementing useful functionalities in the project code.

Association is used where classes are together related by a relation which is not
inheritance but only associated to each other because they have access to each other’s
variables. In this relation there is usually a bigger class which needs association relation
from a smaller class. The bigger class is a more major part of project, using variables
from the smaller class. The bigger class gets access to variables of smaller class and
also all the classes inheriting from the bigger class get access to variables from the
smaller class. The vairables are essential to be described in the smaller class and
cannot be directly defined in the major class because it adds up to a clean and consis-
tently understandable code. In this case the class RobotFPE defined by object "08"
is in association relation with class hand and using variable of class hand i.e. grippos
using a pointer variable. Similarly class quaternion is associated to worldobject class
by association relation becasue the variables of class quaternion i.e.x,y,z,w are used to
define orientation which are used in the class worldobject. The class quaternion.h is
included as a header file in class worldobject which then allows access to variables of
class quaternion to class worldobject and all classes inheriting from worldobject and
this acces sis done using poniters.

Another relation is aggregation and this is a more critical relation and also use
pointer references. It is used where a class variable, if do not exist, must not let its child
classes variables be instantiated and used. In this case world class is in aggregation
relation to Abstract Object class, humanspace class and robot class. The class Abstract
Object which have child classes as Grasp Object and Obstacle class are also related
by aggregation to the class world. So this means if the world class were not to exist
the Grasp Object and Obstacle Class variables cannot be initialized or used because
they use the variables inherited from class Abstract Object which itself cannot exist
because the class world do not exist and these two classes are in aggregation relation.
The related variables are all linked using pointer implementations and they help to
implement both association and inheritance relations. So pointers are used to take
input values for child classes i.e. Grasp Object and Obstacle using pointer variables of
parent class Abstract Object which are used as a refernence with varibales of world
class.

tf2ros: :Buffer tfBuffer;

tf2ros::TransformListener tflListener(tfBuffer);
...// code continued

43

This introduces tf2 as a library?. tf2 is used to write broadcaster and listener in C++
and Python programs and essentially used to detect position of variable in one frame
relative to second frame, all this are relative to standard "world" frame. This lets the
program compute difference between two frames relative to world frame and then
the information used to match movements from one frame to another thus enabling
motion in robot as desired or for example in a game of moving one turtle behind
another. tf2 library is used to create three coordinate frames, a world frame which is a
standard, then an x frame which suppose can be a keystroke frame, and a 'y frame
which suppose can be system listener frame. tf2 broadcaster is used to publish the x
coordinate frame and a tf2 listener listens to it and computes the difference in the
frame x and standard world frame and then enables to compute the real difference
in position of two frames and this information can be listened by a variable defined
in the program. This information can be used to output on console or can be used
to match movements of two frames by moving the frame y to a difference relative to
world frame thus matching frame x and y. To use tf2 first a buffer is allocated and
used. After this a listener object is defined for tf2 which will be later used to listen the
values and use them in program.

while (nodehandle.ok()) {
for (const auto topic : ROSNODET::topics)

{

geometrymsgs: :TransformStamped transformStamped?;
geometrymsgs: :TransformStamped transformStamped?;
geometrymsgs: :TransformStamped transformStamped3;

// Rest of the statements similar and continue until transformStamped7

}

...// code continued

}

while loop is started and objects named transformStamped1...n are defined here
one for each joint.

try {

transformStampedl=tfBuffer.lookupTransform("world", o5a.name, ros::Time(0));
transformStamped2=tfBuffer.lookupTransform("world", o5b.name, ros::Time(0));
transformStamped3=tfBuffer.lookupTransform("world", o5c.name, ros::Time(0));

/)'Rest of the statements proceed until transformStamped7 object and o5g joint

}

catch (tf2::TransformException &ex) {
ROS_WARN("%s", ex.what());

ros::Duration(@0.1).sleep();
continue;

A try catch block is used to compare and connect the attribute of robot for which
we seek values i.e. in this case joint 1...7 ,relative to standard world and store them in
the defined objects transformStamped1,2,3....

Then exceptions are caught in catch block and some statements are defined for this
This isin case some things don't work. The objects store the values in tfBuffer after the
lookup command compares the joint values with standard frame values and computes
the difference before storing the final position in the object variables.
o5a.p1[0@]=transformStampedl.transform.translation.x;

o5a.p1[1]=transformStamped?.transform.translation.y;
o5a.p1[2]=transformStampedl.transform.translation.z;

“http://wiki.ros.org/tf2/Tutorials/Introduction

44

ROSINFOSTREAM("pandalink1_Position_is"<<"x="<< 05a.p1[0]<<",y="<<05a.p1[1]<<",
z="<<05a.p1[2]);

o5a.or2.w=transformStampedl.transform.rotation.w;
oba.or2.x=transformStampedi.transform.rotation.x;
oba.or2.y=transformStampedl.transform.rotation.y;
o5a.or2.z=transformStampedl.transform.rotation.z;

ROSINFOSTREAM("pandalink1_QOrientation_is"<<"w="<< oba.or2.w<<",6 x="<<o0ba.or2.x<<",
y="<<0ba.or2.y<<",z="<<05a.0r2.z);

...// code continued

Here in these steps, the object variables of the program take input the objects values
from object transformStampedx and store them in the node program variable and
which then outputs these values.

This program thus listens to values from simulation and displays using appropriate
output statements. The robot in Gazebo is thus connected to Rviz motion planner
using ROS which enables the node program robot_models_node . cpp, to listen to desired
values in this case position and orientation of joints .

6.3 Future Work Implementing Application Model
Programmatically

The thesis work i only completed up to implementing world model and safety model.
The application model is left pending to be completed in future.

45

/7 EVALUVATION

This section demonstrates the results for the program implemented in the previous
chapter as well as the results for the test cases implemented.

7.0.1 World Model Implementation Results

The implementation section gives out results for the Position and Orientation of Joints
of Robot Franka Panda Emika .

They are 7 in number but only about 3 are shown here as a sample.Here are the

results .

pandalink
pandalink2
pandalink3

..//code
pandalinki
pandalink?2
pandalink3

..//code

Position is x=0,y=0,z=0.333

Position is x=0,y=0,z=0.333

Position is x=-0.120566,y=-1.81861e05,z=0.625095

continued

Orientation is w=1,x=0,y=0,z=7.54195e05

Orientation is w=0.693616,x=-0.693595,y=-0.137573,2=-0.137468
Orientation is w=0.980906,x=1.16121e05,y=-0.194483,2=8.93912e05
continued

The robot was moved in Gazebo Simulator after a motion planning trajectory execu-
tion in Rviz motion planner. The node was again built and run giving new values for
position and orientation of joints.

pandalink
pandalink?2
pandalink3
....//code
pandalinkT
pandalink?2
pandalink3

..//code

Position is
Position is
Position is
continued

Orientation
Orientation
Orientation
continued

is w=0.703636, x=0,y=0,z=0.710561
is w=0.120731,x=-0.695508,y=-0.127549, z=0.696724
is w=0.443721,x=-0.314109, y=0.478016,7=0.68989

This show a changed set of values for position and orientation for all joints of Robot
Franka Panda .

7.1 World Model Test Implementation

The world model program implementation node constructed and explained in above
section and known as robot_models_node. This program need to be tested for some

46

key points. For this another program called a node "worldsafety" is constructed. There
are many tests done for this program which include various tests which are described
in following sections.

Static tests

After this stage the program is once again built and run and this now displays the
new changed values for robot joints position and orientation in Gazebo simulator.
The results are then shared in evaluation section. More details about the tools and
attributes they can handle are described below.

47

Bibliography

[1]

[2]

[3]

[4]

(5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

48

A. McMurrey" "David. Features of Industrial Robots. URL: https : / /www . tu-
chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/
TechComm/acchtml/class_ex.html.

Souri Alireza, ali Sharifloo Mohammad, and Norouzi Monire. “"Formalizing Class
Diagram In UML". In: (2007).

Kaur Amandeep and Kaur Manpreet. “"Analysis of Code Refactoring Impact on
Software Quality ". In: (2016).

A Kulkarni Amith et al. “"Recent Development of Automation in Vehicle Manufac-
turing Industries™. In: (2019).

Dhillon B.S. "Robot Reliability and Safety”. Springer Verlag, 2015.

Siciliano Bruno, Sciavicco Luigi Lorenyo, and Villani Giuseppe Oriolo. "Robotics
Modelling,Planning and Control Advanced Textbooks in Control And Signal Processing
Book ". Springer, 2009.

Siciliano Bruno, Sciavicco Lorenzo, and Villani Giuseppe Oriolo Luigi. "Robotics :
Modelling Planning and Control ". Springer, 2010.

CeTi Book. URL: https://wwwpub.zih.tu-dresden.de/~scheuner/adebcdbfabch688174b7671h01
content/files/CeTI_Book_v18.pdf.

Creating a document in LaTeX. URL: https://www . tu-chemnitz .de/phil/
english/sections/linguist/independent/kursmaterialien/TechComm/
acchtml/class_ex.html.

Rus Daniela and T.Tolley Micheal. “'Design, fabrication and Control of Soft
Robots™. In: (2015).

M. Ebert Dirk and D. Henrich Dominik. “"Safe Human-Robot-Cooperation: Image-
based collision detection for Industrial Robots". In: (2002).

Matheson Eloise et al. “"Human-Robot Collaboration in Manufacturing Applica-
tions: A Review". In: (2019).

Sabah Al-Fedaghi. “"Diagramming the Class Diagram: Toward a Unified Modeling
Methodology". In: (2017).

GmbH Franka Emika. "Franka Panda User Guide". Franka Emika GmbH, 2018.

Gotda Grzegorz, Kampa Adrian, and Paprocka Iwona. “"Analysis Of Human Oper-
ators And Industrial Robots Performance And Reliability"”. In: 9 (2018).

Zhang Hong. "Visual Motion Planning for Mobile Robots™. In: 18 (2002).

https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://wwwpub.zih.tu-dresden.de/~scheuner/ad0bcdbfabcb688174b767fb01dec1a5d482ed/content/files/CeTI_Book_v18.pdf
https://wwwpub.zih.tu-dresden.de/~scheuner/ad0bcdbfabcb688174b767fb01dec1a5d482ed/content/files/CeTI_Book_v18.pdf
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html
https://www.tu-chemnitz.de/phil/english/sections/linguist/independent/kursmaterialien/TechComm/acchtml/class_ex.html

[17] Mda Fonseca ljar and N Pontuschka Mauricio. “'The State-of-the-art in Space
Robotics™. In: (2015).

[18] Edward Colgate J., Wannasuphoprasit Witaya, and A. Peshkin Michael. "'Cobots:
Robots For Collaboration With Human Operators™. In: (1996).

[19] Osis Janis and Donins Uldis. “"Formalization of the UML Class Diagrams . In:
(2010).

[20] Cheng Jingyuan, Chen Xiaoping, and Lukowicz Paul. “'Towards Coexistence of
Human and Robot: How Ubiquitous Computing Can Contribute?™ In: (2014).

[21] Wienke Johannes and Wrede Sebastian. “'Failures In Robotics And Intelligent
Systems™". In: (2017).

[22]). CraigJohn. "Introduction To Robotics ". Vol. 3. Pearson Education International,
2005.

[23] Kim Junsu, Moon Hongbin, and Jung Hosang. “"Drone-Based Parcel Delivery
Using the Rooftops of City Buildings: Model and Solution™. In: (2020).

[24] D. Riek Laurel. ""Healthcare Robotics™. In: (2017).

[25] Gorner Michael et al. ""Movelt! Task Constructor for Task-Level Motion Planning™.
In: (2019).

[26] Peshkin Michael and Edward Colgate J. “"Feature: Cobots"™. In: 26 (1999).

[27] Vasicl Milos and Billard Aude. "'Safety Issues in Human-Robot Interactions™. In:
(2013).

[28] Visinsky Monica, D. Walker lan, and R. Cavallaro Joseph. “"Fault Detection and
Fault Tolerance in Robotics". In: (1992).

[29] Ben-Ari Mordechai and Mondada Francesco. "Elements of Robotics". Springer,
2018.

[30] Quigley Morgan et al. “"ROS: an open-source Robot Operating System™. In:
(2009).

[31] Nikolaus Muellner.”Three Decades after Chernobyl: Technical or Human Causes?"
In: The Technological and Economic Future Of Nuclear Power (2019).

[32] Koenig Nathan and Howard Andrew. "'Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator™. In: (2004).

[33] B.M. de Koster René. ""Automated and Robotic Warehouses: Developments and
Research Opportunities™. In: (2018).

[34] H Hosseini S and M Goher K. “Personal Care Robots for Older Adults: An
Overview". In: (2016).

[35] Ahsan Badruddin S. and M. DildarAli S. “"Recent Developments in the Optimiza-
tion of Space Roboticsfor Perception in Planetary Exploration™. In: (2015).

[36] Robla-GomezS. et al. “"Working Together: A Review on SafeHuman-Robot Col-
laboration inIndustrial Environments". In: (2017).

[37] Haddadin Sami et al. “"On Making Robots Understand Safety:Embedding Injury
Knowledge Into Control™. In: (2007).

[38] A. White Stephen. “Introduction To BPMN"". In: (2004).

[39] Leigh Anderson Susan.™Asimov's “Three Laws of Robotics” and Machine Metaethics".
In: (2005).

[40] Kerezovi¢ Tanja et al. “"Human Safety In Robot Applications - Review Of Safety
Trends . In: (2013).

49

[41] Niemueller Tim and Widyadharma Sumedha. "Artificial Intelligence - An Introduc-
tion to Robotics". 2003.

[42] Mens Tom. ""A Survey of Software Refactoring™. In: (2004).

[43] Gao Yang and Chien Steve. "'Review on Space Robotics: Towards Top-Level
Science through Space Exploration ™. In: 2 (2017).

50

Statement of authorship

| hereby certify that | have authored this Master Thesis entitled Design and Implemen-
tation of a Model-based Architecture for Cobotic Cells independently and without undue
assistance from third parties. No other than the resources and references indicated
in this thesis have been used. | have marked both literal and accordingly adopted
guotations as such. There were no additional persons involved in the intellectual
preparation of the present thesis. | am aware that violations of this declaration may
lead to subsequent withdrawal of the degree.

Dresden, 27th October 2020

Nikhil Ambardar

	Title page
	Contents
	INTRODUCTION
	Robots and Cobots
	Components Of a Typical Robot
	Uses And Applied Fields
	Elderly Care
	Medical Uses
	Warehouse Operator
	Food Home Delivery
	Automotive Industry

	Importance Of Robots In Today's Time
	Expectations From Robots
	Evolution - Robots to Cobots

	INSPIRATION AND DRIVING FORCE
	BACKGROUND
	About Franka Emika Panda Robot
	Robotics - Features
	Sensitivity
	Drive a.k.a Motion
	Impedance
	Collision Detection and Reaction

	Software Tools Robot Franka Uses
	Robotic Coexistence With Humans - Meaning Of Cobots
	Existence Alongside Humans
	Collaboration and Co-operation
	Real-time and Presence Acknowledged Collaboration

	Accidents Due To Malfunctions and Consequences
	Mechanical Failure
	Electrical Anomaly In Components
	Malfunctioning Software
	Human Operator Errors

	Making Robots Safer And Safe Deployment Practices

	STATE OF THE ART
	Motion Planning And Simulations
	Modeling - Explaining Choice of Design Depictions
	Unified Modeling Language (UML) Diagram For World Model Class Diagram
	Business Process Modeling Notation (BPMN) for Application Model
	Unified Modeling Language State Machine for Safety Model

	Tools Used
	Setup Environment Using ROS To Run Services, Motion Planning In MOVEIT and GAZEBO For Simulations and more

	CONCEPT
	Theme
	The Models Designed
	Programming Of Hardware And Software Components - Purpose And Concepts
	Refactoring and Reclassification
	Connecting Everything - Simulations

	IMPLEMENTATION
	Introduction
	WORLD MODEL IMPLEMENTATION
	Programming - The Implementation Of World Model

	Future Work Implementing Application Model Programmatically

	EVALUVATION
	World Model Implementation Results
	World Model Test Implementation

	Bibliography

