Reusing Static Analysis across Different
Domain-Specific Languages using Reference
Attribute Grammars (Artefact)

Johannes Mey, Thomas Kiithn, René Schone, and Uwe Afimann

This artefact contains the source code, measurement environment and measurement data
of the evaluation of the paper with the same name.

A git repository containing this artefact is available at https://git-st.inf.tu-dresden.de/
jastadd/reusable-analysis/

Abstract of the Publication

Context: Domain-specific languages (DSLs) enable domain experts to specify tasks and problems
themselves, while enabling static analysis to elucidate issues in the modelled domain early.
Although language workbenches have simplified the design of DSLs and extensions to general
purpose languages, static analyses must still be implemented manually.

Inquiry: Moreover, static analyses, e.q., complexity metrics, dependency analysis, and declaration-
use analysis, are usually domain-dependent and cannot be easily reused. Therefore, transferring
existing static analyses to another DSL incurs a huge implementation overhead. However, this
overhead is not always intrinsically necessary: in many cases, while the concepts of the DSL on
which a static analysis is performed are domain-specific, the underlying algorithm employed in
the analysis is actually domain-independent and thus can be reused in principle, depending on
how it is specified. While current approaches either implement static analyses internally or with
an external Visitor, the implementation is tied to the language’s grammar and cannot be reused
easily. Thus far, a commonly used approach that achieves reusable static analysis relies on the
transformation into an intermediate representation upon which the analysis is performed. This,
however, entails a considerable additional implementation effort.

Approach: To remedy this, it has been proposed to map the necessary domain-specific concepts
to the algorithm’s domain-independent data structures, yet without a practical implementation
and the demonstration of reuse. Thus, we employ relational Reference Attribute Grammars
(RAGSs) by creating such a mapping to a domain-independent overlay structure using higher-order
attributes.

Knowledge: We describe how static analysis can be specified on analysis-specific data structures,
how relational RAGs can help with the specification, and how a mapping from the domain-specific
language can be performed. Furthermore, we demonstrate how a static analysis for a DSL can be
externalized and reused in another general purpose language.

https://git-st.inf.tu-dresden.de/jastadd/reusable-analysis/
https://git-st.inf.tu-dresden.de/jastadd/reusable-analysis/

Grounding: The approach was evaluated using the RAG system JastAdd. To illustrate reusability,
we implemented two analyses with two addressed languages each: (1) a cycle detection analysis
used in a small state machine DSL and for detecting circular dependencies between Java types
and packages, as well as (2) an analysis of variable shadowing applied to both Java and the
Modelica modelling language. Thereby, we demonstrate the reuse of two analysis algorithms in
three completely different domains. Additionally, we use the cycle detection analysis to evaluate
the efficiency by comparing our external analysis to an internal reference implementation analysing
all Java programs in the Qualitas Corpus. Our evaluation indicates that an externalized analysis
incurs only minimal overhead.

Importance: We make static analysis reusable for both DSLs and general purpose languages,
showing the practicality and efficiency of externalizing static analysis using relational RAGs.

Running the Evaluation
Preparation for the Qualitas Corpus

Note, that for all parts involving Java, the Qualitas Corpus is required to be downloaded
first. To do that:

1. Visit http://qualitascorpus.com/docs/faq.html#download and follow the instruc-
tions there to download both parts of the archive.

2. Unpack the archives.

3. Create a symlink to QualitasCorpus-$VERSION/Systems/ named qualitas
(alternatively, or if Docker does not follow symbolic links for security reasons, create
a directory named qualitas and copy all systems into it)

4. Create a directory docker-results which serves as a shared directory with the
container.

Preparation for the Docker Image

Load the docker image using docker load --input reusable-analysis.tar

Running the Docker Container

Run the container using
docker run --rm -it -v "$PWD"/docker-results:/reusable-analysis/benchmark:Z
-v "$PWD"/qualitas:/reusable-analysis/qualitas:Z reusable-analysis

Inside the Container

For convenience, there are several scripts to execute parts of the evaluation found in the
paper named after the respective part and start with ./run_. The main evaluation is
performed with ./run_scc_java. Those scripts internally call the correct Gradle tasks.

http://qualitascorpus.com/docs/faq.html#download

Measured Data

The measurements were performed on an Intel i7-8700 workstation with 64GB of memory
using Fedora Linux 29 running on kernel 4.18, OpenJDK 1.8 and JastAdd 2.3.

The data obtained using the provided artefact are contained in the file measured_results.csv.

This file is comma-separated file with the following columns:

Title Explanation
1 Domain language on which the analysis is performed
2 Analysis kind of analysis (type or package)
3 Internal true if direct, false if reusable
4 JavaFiles number of files analyzed
5 Nodes number of nodes in the dependency graph
6 Edges number of edges in the dependency graph
7 NodesAndEdges number of elements in the dependency graph
8 SCCs number of computed SCCs
9 FullTime total time of the run (parse+generation+analysis)
10 ParseTime parse time
11 GenerationTime generation time of the problem-specific structure
12 AnalysisTime analysis time
13 GenAnaTime sum of generation and analysis time
14 Run number of the run (0-100)
15 Scenario name of the analyzed program
16 TimeTime wall-clock time as taken by the time command
17 Exit return value of the benchmark run (always 0)

	Abstract of the Publication
	Running the Evaluation
	Preparation for the Qualitas Corpus
	Preparation for the Docker Image
	Running the Docker Container
	Inside the Container

	Measured Data

