
Fakultät Informatik Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

Automated Testing of OpenAPI
Interfaces Using Attribute
Grammars
Jueun Park
jueun.park@mailbox.tu-dresden.deBorn on: 16th June 1998 in Seoul, Korea RepublicCourse: Media Computer ScienceMatriculation number: 4729331Matriculation year: 2017

Bachelor Thesis
to achieve the academic degree
Bachelor of Science (B.Sc.)

Supervisors
Dipl.-Inf. Johannes Mey
Dr.-Ing. Karsten Wendt
Supervising professor
Prof. Dr. rer. nat habil. Uwe Aßmann

Submitted on: 17th October 2021

mailto:jueun.park@mailbox.tu-dresden.de

Contents

1 Introduction 3

2 Background 42.1 Software Testing . 42.2 REST API . 42.3 OpenAPI Specification . 62.4 Reference Attribute Grammar . 7
3 Current Approaches for OpenAPI Testing 103.1 Specification-based Approach . 103.2 Property-based Approach . 113.3 Constraint-based Approach . 113.4 Operation Dependency Graph Approach 123.5 Stateful REST API Fuzzer . 123.6 Summary . 12
4 RAGO API 144.1 Grammar . 144.2 Process, Implementation . 154.3 Validation . 17
5 Test Methods 185.1 Random Testing . 185.2 Parameter Inference . 19
6 Suitability of RAGs for OpenAPI Testing 226.1 Feasibility . 226.2 Benefits . 23
7 Conclusion 25

Bibliography 26

2

1 Introduction
Automated testing is one type of software testing which is expected to review, validatesoftware products and find errors. Compared to manual testing, it has a huge benefitin execution of test cases, that numerous test cases are automatically generated. Inweb-based software architectures using REST interfaces, it also could be a meaningfulapproach to raise the security and quality.One kind of testing such architectures is to validate REST interfaces and check ifthere are errors in them. In the last years, the OpenAPI Specification1 has becomethe common way to document the communication endpoints and exchanged datastructures of REST APIs. Such documentations enable to test REST APIs in black-boxtesting approaches. OpenAPI specifications are described in JSON or YAML documentsand defined by a semi-formal specification describing permitted and required elementsas well as their semantics. While there is no formal definition of the full OpenAPIlanguage, a meta-schema exists for the JSON Schema parts of the language.This paper investigates how such specifications can be used to test interfaces de-scribed by them. Since these specifications are tree-shaped, the investigation focuseson a grammar-based analysis approach, Reference Attribute Grammars (RAGs) [10].This paper also compares already presented REST API automatic testing approachesand examines whether these can also be implemented in RAGs, whether this imple-mentation is sensible and whether RAG has benefits and feasibility to REST API testing.To answer the questions, we have implemtend RAGO API, the first REST API Fuzzingtool implemented in RAG. As a summary, following three questions are formulated asresearch questions:
RQ1 : Which approaches and techniques for automated tests of OpenAPI specifi-

cations are researched and developed so far?
RQ2 : Are suggested testing approaches from the literatures also available in RAG?
RQ3 : Which advantages can RAG provide with its features at expressing testing

approaches?

RQ1 is intended to investigate which approaches might be able to implement inRAG. Corresponding literatures are introduced in Chapter 3. RQ2 focuses on theimplementation the data structure and testing methods in RAG and is answered inChapter 4 and Chapter 5. In Chapter 6, Results for RQ3 shows concretely whichfeatures of RAG could be usable and which benefits exist.
1https://swagger.io/specification

3

https://swagger.io/specification

2 Background

In this Chapter, we present basis concepts and technologies of this work to understandthe following contents.

2.1 Software Testing

Software testing is an examination to see whether a software product works with itsexpected functionality and is defect free. The problem without testing is that bugscould be expensive or also critical in terms of security. Solving this problem bringsthe software huge advantages (e.g. effectiveness, stronger security, robust softwarequality).There are several classifications in software testing. One classification is related togoals of testing: testing if a software does not have critical bugs (Functional Testing),testing if a software is effective enough (Non-Functional Testing) and modifying anexistent software product to correct appeared bugs (Regression Testing) [3]. If asoftware product is implemented small enough, it is commonly better to test manuallyand a tester individually defines test cases. But, in most industrial softwares, like RESTAPIs, it is necessary to automate tests, because the products might be too large towrite all cases that must be tested manually.There is also a type the testings are distinguished by, box approach. It has threecategories, black and white Box Testing [16]. Black box tests are developed withoutknowledge of the internal structure of the system to be tested, but on the basis ofdevelopment documents. In practice, black box tests are usually not processed bydevelopers of a target software, but by technically oriented testers or by special testdepartments or test teams. White box tests are developed on the basis of knowledgeabout the internal structure of the component to be tested.This paper focuses on automated testing with a black box approach. In Section 2.3,the selection of the approach is explained.

2.2 REST API

REST API is an API (Application Programming Interface) that conforms the commonarchitectural style for web services, REST (REpresentational State Transfer) and iscreated to standardize the design and development of World Wide Web. The concept

4

of REST has been proposed by Roy Fielding in 2000 [6]. It offers constraints to increasesimplicity, performance, visibility, modifiability, portability and reliability of APIs.Constraints defined in REST are following:
Client-Server: API must be a connection in a client-server architecture.
Stateless: Every request must be stateless (i.e. independent of other requests).
Cache: Data in API must be cacheable.
Layered System: Several servers are able to use in one API.
Code on Demand: Responses might be an executable code (optional).
Uniform Interface: API holds on four additional constraints to be consistent

• Resources in requests are identified by URI• Client should hold the representation of a resource that has enough infor-mation to modify or delete the resource.• Each message includes enough information to describe how to process themessage.• HATEOAS (Hypermedia as the Engine of Application State) is available.
With this set of constraints system resources are characterized by URIs, sent asrequests and modified with CRUD operations (Create, Read, Update, Delete), that aremapped to the HTTP methods (POST, GET, PUT, DELETE). Additionally, URIs, headerand body objects are modified by parameters (Query, Path, Body, Header, Form). Tochange URIs and call an operation with variables, parameters in Query and Path areused.An example for a web service with REST API might be a web service of a pet store.Example operations for this REST API could be:

GET /pets(returns all pet information)
GET /pets/findByStatus?k1=v1&k2=v2(returns information of users with Query parameters k1 = v1 and k2 = v2)
GET /users/{id}(returns information of an user with the given Path parameter, id)
POST /users(creates a new user)
PUT /users/{id}(updates information of an user with the given Path parameter, id)
DELETE /users/{id}(removes an user with the given Path parameter, id)
When a client request is made via a REST API, it transmits a representation of theresource status to the client or endpoint.This representation or information is provided in mostly JSON or XML. An example ofa request in pet store we used for researches is following:

5

Listing 2.1 Example of Request
POST /v2/pet HTTP/1.1
Host: petstore.swagger.io
Accept: application/json
Content-Type: application/json
Content-Length: 215

{ "id": 0, ... }

After a client sends a HTTP request, a corresponding server is going to send back aHTTP response with headers and optionally a payload (data pack for a GET request).Additionally, a numeric status code will be a part of this response as well. Staus codesare specified in one of five categories:
1xx : Informational provisional responses
2xx : Request is successfully processed
3xx : Request requires more information to complete the request
4xx : Client error (invalid request, non-existent resource, client not authenticated orauthorized)
5xx : Server error (Server can not supply a valid response)
HTTP status code is an important component to this work, because it provides to testREST APIs and find out errors (e.g. requests expected as valid return 4xx status codeor requests expected as invalid return 2xx status code). A response by the requestshown above is in Listing 2.2.

Listing 2.2 Example of Response
HTTP/1.1 200 OK
Date: Sat, 1 Jan 2000 00:00:00 GMT
Content-Type: application/json
Connection: keep-alive
Server: ...

{ "id": 0, ... }

2.3 OpenAPI Specification

Nowadays, there is a way to document REST APIs which allows both humans andcomputers to understand the whole structure of a RESTful web service. It is calledOpenAPI or also known as Swagger (older than 3.0.0 version).An OpenAPI document with its specification is written in a structured JSON or YAMLfile and describes which API operations are available, what kind of details they have,how to reach them using a URI, what parameters and request bodies are requiredand optional in available operations and what authentication schema is.OpenAPI specification does not hold on strict definitions and has a tree-shaped struc-ture, which facilitates to use and extend in more than 25 programming languages,

6

while JSON schema is available in them. An example of an OpenAPI document is shownin Listing 2.3.As an OpenAPI specification describes the interfaces of a server, black-box testingsare available. There are many interesting approaches in an black-box architecture:[2], [4], [11], [13], [18], more concrete explanations to separate approaches are inChapter 3.Black-box testing needs the specification of the REST API (in our case, OpenAPI speci-fication) and generates test cases automatically, but, does not require an access tothe source code. OpenAPI specifications are language-agnostic. So, it is available forevery API regardless of in which programming language it is implemented. On theother hand, it might produce test results which are not expected or valid, because theaccess to the server is limited.
Listing 2.3 Example OpenAPI
{

"openapi" : "3.0.0",
"info" : {
"description" : "This is a sample server Petstore server. For this

sample, you can use the api key ‘special-key‘ to test the
authorization filters.",

"license" : {
"name" : "Apache-2.0",
"url" : "https://www.apache.org/licenses/LICENSE-2.0.html"

},
"title" : "OpenAPI Petstore",
"version" : "1.0.0"

},
...
"paths" : {
"/pet" : {
"post" : {

"tags" : ["pet"],
"summary" : "Add a new pet to the store",
"description" : "",
"operationId" : "addPet",
"requestBody" : {
"$ref" : "#/components/requestBodies/Pet"

},
"responses" : {
"200" : {
...

}

2.4 Reference Attribute Grammar

One of main research targets of this work is Reference Attribute Grammar[10], anextension of Attribute Grammar (AG)[12].The concept of AG was introduced by Knuth [12] as a solution of problems withcontext-free grammars. Context-free grammars (e.g. EBNF, BNF) can only specifysyntax with terminal, non-terminal symbols and production rules. But, in computerprograms, it is necessary to define the meaning of semantic rules, data types and

7

Figure 2.1 Example AST, motivated by [9]
values and AGs allow to define them.In AGs, terminal and non-terminal symbols are all terminal and non-terminal symbolsare characterized as nodes in an Abstract Syntax Tree (AST) and have own attributesto describe which functionality or value they have. The attributes are specified as
synthesized or inherited. In a synthesized attribute, the value is determined bythe attribute value at child nodes. Otherwise, the attribute is inherited. AGs areimpractical for description of syntax when every dependency of all attributes is local(i.e. definable only with synthesized and inherited) and can follow the syntax tree, butnot for descriptions of syntax with non-local dependencies, e.g. a dependency froma root node to a leaf node. This situation leads to problems in terms complexity ofanalysis and extension.In 2000, Hedin proposed RAG as an object-oriented extension of AG to solve theseproblems [10]. This approach enables the reference of nodes in an AST. Every nodecould be referred and belong to structured attributes e.g. sets, dictionaries, lists, etc.If a node has a reference attribute, the attribute represents a direct connection froman any node that is freely distant (non-local) and to itself. The value of the referrednode is directly usable in the referring node without accessing any other nodes in theAST. A graphical example of an AST in RAG compared to a traditional AST without RAGis shown in Figure 2.1.Such features of RAG represent advantages over AG, largely in efficiency. It is notnecessary to duplicate a same value of a node to be utilized in another node andsemantic functions in a complex data structure can be split into smaller functionswhich are completely describable in RAG. Consequently, RAG can extend existinggrammars and give them more functionalities.An extensible system producing language-based compilers and tools is called, Jas-tAdd. It evaluates definitions of structures of AST nodes and attributes and generatesmodules and tools. There are already several tools implemented and extended withJastAdd (e.g. ExtendJ, JModelica.org, abc, Soot, McLab, Palacom, etc.1)Generally, JastAdd needs two input data to generate Java classes. One input data is anast-file where AST nodes are described. With this input, a class for every terminal nodeis generated and reconstructed in Java. Other input data is one or more declarativedefinitions of corresponding attributes. A graphical model of JastAdd is in Figure 2.2.Examples are in Listing 2.4 and Listing 2.5 implementing basic arithmetic operations.
1https://jastadd.cs.lth.se/web/applications.php

8

https://jastadd.cs.lth.se/web/applications.php

Abstract Syntax Tree

declarative definitions

generated JAVA classesEvaluator tool (JastAdd)

Figure 2.2 Architecture of JastAdd
Listing 2.4 shows how separate expressions can be constructed in AST and Listing 2.5explains a case of how attributes could be implemented. Especially, synthesized at-tributes concretized by eq (equation).

Listing 2.4 Example of an AST
Root ::= Def* Exp ;
Def ::= <Name:String> <Value:float> ;
abstract Exp ;
abstract UnaryExp:Exp ::= Exp ;
abstract BinExp:Exp ::= A:Exp B:Exp ;
AddExp:BinExp ;
MulExp:BinExp ;
Number:Exp ::= <Value:float> ;
Var:Exp ::= <Name:String> ;
UnaryMinusExp:UnaryExp ;
DivExp:BinExp ;
MinusExp:BinExp ;

Listing 2.5 Example of synthesized attributes
aspect Printing{
syn String ASTNode.print();
...
eq AddExp.print() = "(" + getA().print() + " + " + getB().print() + ")";
eq MulExp.print() = "(" + getA().print() + " * " + getB().print() + ")";

}

9

3 Current Approaches for OpenAPI
Testing

This Chapter introduces the current approaches developed for automated testing ofREST APIs described in OpenAPI documents. Several approaches suggesting to testAPIs with OpenAPI specifications are mostly black-box approaches where an access toa source code is irrelevant [2], [4], [11], [13], [18]. There is also a white box approach[1] which is not the main research target of this paper, but, still an interesting way.Mainly, this Chapter investigates which approaches have been released so far, howthey work and what they have achieved.

3.1 Specification-based Approach

In 2018 Ed-douibi proposed a prototype to generate test cases for REST APIs relyingon their OpenAPI specifications [4]. This approach receives an OpenAPI specificationin JSON file first, configures meta-models (an OpenAPI meta-model and a test suitemeta-model) and generates test cases.After a model extraction (OpenAPI specification into OpenAPI meta-model), it returnsa configured OpenAPI meta-model that contains a set of valid models for a languageto simplify the integration and modification of information in the specification.A Model transformation (OpenAPI meta-model into test suite meta-model) considersonly properties which are relevant to test cases (HTTP-requests). There are severalproduction rules, for instance, parameter inferences, to define valid and invalid re-quests and generate them. After the model transformation, test cases are generatedand used to test the REST API.The main research goals of Ed-douibi and his team were not only suggesting a testmethod, but, also finding out which coverage level (in terms of endpoints, operations,parameters and data definitions of the OpenAPI definition) their tool implementationhas and where REST APIs in reality fail mostly in the definitions and implementation.As results, they could determine that the tool implementation is practically usablein real REST APIs, because 87% of operations, 62% of parameters, 81% of endpointsand 76% of definitions in 91 APIs were testable. They also figured out the mainfailing points in the definition and implementation: mistakes in the definition (e.g.missing required field, wrong JSON schema) and bad implementation of the APIs (e.g.unhandled exceptions in the server).

10

3.2 Property-based Approach

QuickREST, the prototype of property-based approach, has been introduced by Karls-son[11]. It suggests a method to generate random test inputs (requests and parame-ters) applying property-based generation. Test inputs are either completely randomor matching to the given OpenAPI specification.
Property-based testing is not only a generation of test inputs, it checks if generatedinputs are considered as expected properties with the aid of shrinking. Shrinkingmeans a smallest test input which fails in the same way is searched, if a generatedtest input is not accepted as expected. With those features, it is possible to formulateand verify properties of the test results e.g. response body, so the testing methodproduces better results than only reporting HTTP responses.The first concrete step of QuickREST is generating test inputs including random pa-rameters and request bodies. Test inputs are characterized as URLs.Secondly, responses to generated requests (test inputs) are checked, if they providestatus codes defined in the OpenAPI specification, body payloads also defined in thespecification and no 500 status codes. If such conditions are not satisfied, shrinkingmentioned above will be executed.
After Karlsson’s team has experimented with their proof-of-concept and real APIs(e.g. GitLab) as inputs, they could determine that QuickREST finds real bugs (500 statuscodes), but, is still limited in industry. For the future work, developments of a model forcall sequences considered as interactions of real users and of an automated analysisof logs are needed to improve the effectiveness and size of explorations.

3.3 Constraint-based Approach

The next another automated testing tool is RESTest [13] consisting of a constraint-based black-box approach. Like other approaches, RESTest generates valid and invalidtest cases, but, more effectively through the use of automated analysis of dependenciesbetween parameters and test oracles (4xx and 2xx status codes).
This approach is constraint-based and follows also a model-based approach. AnOpenAPI specification as input is considered as a systemmodel and optionally describedependencies between parameters using exclusive libraries (e.g. IDL4OAS, analyzescorresponding dependencies). With this system model and described inter-parameterdependencies, a test model with conformed configuration data is generated. Configu-ration data of a default test model is manually modifiable. After the generation of a testmodel, the test model and system model are directly set up for generating an abstracttest cases with generation strategies e.g. random input generation. Testing strategiesare not only a generation approach, they can also include automated analysis usingan IDL extension to find out if an operation defined in the system model (OpenAPI)accords with the analyzed inter-parameter dependencies. Lastly, abstract test casesare rewritten in executable test cases which send requests at the client side.
The research in [13] consists of experiments with 6 commercial APIs. It resultedmaximally 99% more and 60% on average valid test cases than random testing andfound more than 2000 failures which were not detectable by random testing.

11

3.4 Operation Dependency Graph Approach

We saw the constraint-based approach tests with parameter dependencies. Thereis one more way to analyze automatically dependencies of properties in an OpenAPIdocument. It is able with RESTTESTGEN [18].What RESTTESTGEN does differently is it analyzes operation dependencies of an APIand computes an operation dependency graph.The graph is a directed graph. If there are two operations derived as nodes and oneedge between them, the edge is labeled with a data. This data is an output data of oneoperation and an input data of the another operation (e.g. an operations getUsers andgetUserById could have a data dependency with the data userId). After this analysis isdone, RESTTESTGEN is ready to generate valid and also invalid test cases.Firstly, test cases are automatically generated with the module, Nominal Tester. Inputsof this module are an OpenAPI specification and its analyzed operation dependencygraph. With that inputs, the test cases are inferred. Test cases created in this modulecomform the specification and its constraints.Subsequently, Error Handling Tester takes generated valid test cases as input andconstructs several invalid test cases based on the constructions of nominal test cases.Sending invalid test cases provokes the data validation of the target API and may createunexpected accepted responses.Experiments with RESTTESTGEN have resulted that this tool is effective in generatingtest cases, because it was applicable in 87 real-world APIs and had operation coverageof 98%. Developers of RESTTESTGEN still have plans to solve limitations (e.g. authenti-cations are missing, test oracle is only status code, the execution is not iterated), so ithas improvements of the capability of testing and presence of security errors.

3.5 Stateful REST API Fuzzer

The last approach related to this paper is RESTler, the first stateful REST API fuzzer [2].Test cases generated by this tool are also called sequences, i.e. a set of requests, wherea request depends on previous requests, if there are several test cases executed.The focus of the test generation in RESTler is not on whether a request must bevalid or invalid in the specification, but on inferring dependencies between requests(e.g. a constraint, executing a request B after a request A, because the input type in Bcorresponds to the output type in A) and analysis of some hidden contributions (e.g. ifa request C is refused after a sequence A after B, C after the sequence A:B will be notexecuted).RESTler found 28 bugs in GitLab and several bugs in Microsoft Azure and Office365.In terms of coverage, it is proved that the code coverage increases, before it stops togain at one time. This tool is not commonly applicable yet, but still valuable to developmore, because it suggests to test APIs with stateful test cases.

3.6 Summary

In this work, we found that most current testing approaches using OpenAPI are basedon Fuzzing, sending random, invalid or unexpected data into interfaces and observeresponses. HTTP status codes were mostly the basis of test oracles, Specification-based, Constraint-based and Operation Dependency Graph Approaches collect also

12

Table 3.1 Overview of Approaches in Table
Type of Errors Type of Process Type of Inference Results

Specification-based
Approach

Nominal Test Cases :
4xx/500 Status Codes,
Schema Errors

Faulty Test Cases : 500,
200 Status Codes

Stateful Parameter Inference Bugs found in 37
experimented APIs of

91

Property-based
Approach

500 Status Codes Stateless/Stateful Inference of Failure
Area

In Average, 9.84%
Probability of Error
Occurrence in GitLab

Constraint-based
Approach

5XX Status Codes,
OpenAPI Schema

Errors, 2XX Related to
Parameters, 2XX

Related to Parameter
Dependencies, 4XX

Status Codes

Stateful Inference of Parameter
Dependency by
IDLReasonera

Over 2000 Bugs found
in 6 commercial APIs

Operation Dependency
Graph Approach

Nominal Cases : 5xx
Status Codes or

Validation Error of
Response

Error Cases : 2xx or
5xx Status Codes

Stateful Inference of Operation
Dependency

Errors found in 87
selected APIs.

Stateful REST API
Fuzzer

500 Status Codes Stateful Inference of Request
Dependency

28 Bugs in GitLab and
several Bugs in

Microsoft Azure and
Office365 cloud

services
ahttps://github.com/isa-group/IDLReasoner

schema validation errors. All of the approaches considered 500 status codes as bugsand several of them expects only 200 status codes by valid test cases and 4xx statuscodes by error test cases. To result more precisely, they all suggest to inferencedata of a server or dependency between requests or requests and responses. Thisusage of inferences requires the stateful process which means requests depend onprevious sequences (i.e. requests, responses). The simplified explanantion of currentresearches is in Table 3.1

13

https://github.com/isa-group/IDLReasoner

4 RAGO API
In this Chapter, we propose RAGO API, the first REST API fuzzing framework modeledin RAG (JastAdd). RAGO API parses the OpenAPI specification in Java to transfer it intoa RAG and produces requests that automatically test the target API.Requests of RAGOAPI are generated in two basic fuzzingmethods. Firstly, generatingrequests with random values. Secondly, inferring parameters available in responses(i.e. an object returned by a response could be usable as a value in an input parameter).

4.1 Grammar

As mentioned in Section 2.3, OpenAPI specifications are written in structured JSONor YAML and do not hold on strict definitions i.e. programming language-agnostic. Itmeans that specifications can be described and implemented in any programminglanguage or grammar, which also applies to RAG.To use OpenAPI in RAG, it is firstly necessary to rewrite the OpenAPI structure in anAST. We have constructed this AST in 95 AST nodes to define 30 objects. The versionof OpenAPI considered in this framework is 3.0.0. To have a better overview, thedefinition of Parameter Object in our AST is shown in Listing 4.1 and can be comparedwith the definition in the OpenAPI official documentation1. Every Reference Objecthas a String token named Ref and refers an object in the OpenAPI document withattributes in Listing 4.2.
Listing 4.1 Parameter Object
abstract ParameterOb;
ParameterReference : ParameterOb ::= <Ref>;
ParameterObject : ParameterOb ::= <Name> <In> <Description> <Required:Boolean>

<DeprecatedBoolean:Boolean> <AllowEmptyValue:Boolean> <Style> <Explode:Boolean>
<AllowReserved:Boolean> [SchemaOb] <Example:Object> ExampleTuple* ContentTuple*
Extension*;

Listing 4.2 Attributes for Reference
coll List<ParameterTuple> OpenAPIObject.parameterTuples() [new ArrayList<>()] root

OpenAPIObject;
ParameterTuple contributes this
to OpenAPIObject.parameterTuples();

1https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md

14

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md

OpenAPI parsed
with openapi4j

OpenAPI parsed
with openapi4j

AST Nodes

Declarative Definitions
of Parser

AST Nodes

Declarative Definitions
of Parser

Parse Backtransformation

OpenAPI in RAG
(JastAdd)

Figure 4.1 Process of RAGO (Parse, Backtransformation)

syn ParameterObject ParameterOb.parameterObject();
eq ParameterObject.parameterObject() = this;
eq ParameterReference.parameterObject() {
for(ParameterTuple t : root().parameterTuples()){
if(t.getKey().equals(getRef().substring(getRef().lastIndexOf("/")+1,

getRef().length())))
return t.getParameterOb().parameterObject();

}
return new ParameterObject();

}

During transferring the structure from OpenAPI to RAG, several characteristics ofJastAdd were detectable:
JastAdd does not support any map structure. So, nodes derived from maps in

OpenAPI must be configured in tuples (List of a named tuple containing a key
and a value).

For instance, elements of Components Object are defined as maps2. JastAdd hasonly AST classes: ASTNode, List and Opt. This problem is solved with construction of anode saving two child nodes in itself. See an example in Listing 4.3
Listing 4.3 Solution of Map Problem
ComponentsObject ::= SchemaTuple* ResponseTuple* ... ;
SchemaTuple ::= <Key> SchemaOb;
ResponseTuple ::= <Key> ResponseOb;

Extensions which are properties of an object class in OpenAPI are also defined in
nodes.

Extensions with unfixed name and value in Objects of OpenAPI are also solved withsuch tuples explained in the previous solution.
Listing 4.4 Solution of Extension
ResponseObject : ResponseOb ::= <Description> ... Extension*;
Extension ::= <Key> <Value:Object>;

4.2 Process, Implementation

After a completion of a syntactic AST structure, values of OpenAPI documents mustbe stored in AST nodes. A diagram in Figure 4.1 represents a graphic overview of theparser we implemented in a process.
2https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#
componentsObject

15

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#componentsObject

Before working with attribute definitions, an input specification in JSON or YAMLfile needs to be parsed in Java to store it into a RAG. A simple JSON or YAML parserdoes not hold on the schema of an OpenAPI specification. So, we used an additionallibrary, openapi4j3. It enables to parse and to validate an OpenAPI document in Javaand performs well. It has small limitations e.g. no support for type ’any’ and mappingwith schema name outside of ’components/schemas’ not supported. But, they are notcritical to this work.
The next step of processing this framework is transferring parsed objects in Javainto AST nodes. This step is done with declarative definitions (not attributes) in jrag file.A small definition example of Parameter Object is in Listing 4.5.

Listing 4.5 Parser for Parameter Object
{ ...
if(parameter.getName() != null)
parameterObject.setName(parameter.getName());

if(parameter.getIn() != null)
parameterObject.setIn(parameter.getIn());

if(parameter.getDescription() != null)
parameterObject.setDescription(parameter.getDescription());

if(parameter.getDeprecated() != null)
parameterObject.setDeprecatedBoolean(parameter.getDeprecated());

...
return parameterObject;

}

First, "parameter" is an object parsed with openapi4j and "parameterObject" isa node which should describe the structure of Parameter Object in RAG. It checkswhether values in "parameter" exist and are set into the matching node in the AST (inthis case "parameterObject"). At the end of the method, it returns the node.
To see if the parser implemented with JastAdd works correctly, parsed nodes in anAST that describes OpenAPI structure must be transferred back into the structureof openapi4j and validated. The validation of objects after processing is explainedin Section 4.3. The way of definitions to transfer RAG into openapi4j is similar to theparser, it only provides the opposite direction of implementation. Listing 4.6 allows tocompare itself to Listing 4.5.

Listing 4.6 Back-Transformation for Parameter Object
{ ...
if(!p.getName().isEmpty())
parameter.setName(p.getName());

if(!p.getIn().isEmpty())
parameter.setIn(p.getIn());

if(p.getRequired() != null)
parameter.setRequired(p.getRequired());

if(!p.getDescription().isEmpty())
parameter.setDescription(p.getDescription());

if(p.getDeprecatedBoolean() != null)
parameter.setDeprecated(p.getDeprecatedBoolean());

...
return parameterObject;

}

3https://www.openapi4j.org/parser.html

16

https://www.openapi4j.org/parser.html

4.3 Validation

For correct (re-)constructions, objects after the back-transformation must be the samebefore. In that sense, a generated JSON or YAML must be equivalent to the given Ope-nAPI document. Thankfully, there are several practical libraries to compare two JSONs(JsonNode, JsonDiff, JsonPath) and conditions for the assertion were uncomplicated.In the validation, differences with empty values and differences in Reference Objectsare excluded. After the observation of OpenAPI documents, we have noticed thatevery author has an individual implementing behavior e.g. description parts are alwaysinitialized in some APIs or nodes with empty values do not exist in others. Empty valuesand Sibling elements of references do not provide semantical differences. So, it wasnot sensible to generate strictly equivalent values4. Its implementation is shown inListing 4.7.
Listing 4.7 Validation Method
JsonNode diff = JsonDiff.asJson(expectedNode, actualNode);
String pathNode;
for(int i = diff.size()-1 ; i >= 0 ; i--){
// get the path of a node involving difference.
pathNode = "$" + diff.get(i).get("path");
// check, if this node exists or has an empty value or a reference.
if(JsonPath.parse(actualNode.toString()).read(pathNode, String.class) == null ||

JsonPath.parse(actualNode.toString()).read(pathNode, String.class).isEmpty())
((ArrayNode) diff).remove(i);

else if(!JsonPath.parse(actualNode.toString()).read(pathNode.substring(0,
pathNode.lastIndexOf(".")).concat(".$ref"), String.class).isEmpty())

((ArrayNode) diff).remove(i);
}
// if the Jsons are equivalent, there is no reason for the text comparison.
// if there is a difference, a text comparison might look better than just the diff.
if (diff.size() != 0) {
Assertions.assertEquals(actualNode.toPrettyString(), expectedNode.toPrettyString(),

"JSONs are different:\n" + diff.toPrettyString());
}

Firstly, it takes a JSON node which is expected after processing phase and an othernode which is actually created. Then, nodes are compared with JsonDiff. It returns anArrayNode, "diff", describing which differences they have and where the differenceshave appeared. Unfortunately, it does not have a filter with empty values. So, thevalidation method tries to get a value of a path in "diff" and checks if it is empty. Thedifferences with empty values or sibling elements of references are removed from thisArrayNode. Afterwards, it executes an assertion with a text comparison, if "diff" has anelement. A text comparison gives a bigger overview in Pretty String.As a result, we have validated the functionality of the structure transfer, while 974
APIs from the repository of apis.guru5 are constructed in RAG and reconstructedin openapi4j. APIs involving validation or null pointer errors at openapi4j were ex-cluded. This significant amount of validations presents that this grammar parses andtransforms reliably OpenAPI documents which are semantically equivalent to theirspecifications.
4https://swagger.io/docs/specification/using-ref/5https://github.com/APIs-guru/openapi-directory

17

https://swagger.io/docs/specification/using-ref/
https://github.com/APIs-guru/openapi-directory

5 Test Methods

As we have discussed in Chapter 3, most black-box REST API tests principally useFuzzing, sending unexpected, random data or data providing errors into input inter-faces. For this purpose, the newly constructed OpenAPI grammar can be extendedwith Fuzzing tests. Section 5.1 introduces a basic random test method. In Section 5.2,an approach for the parameter inference we used in this work is presented.

5.1 Random Testing

OpenAPI defines a parameter in an operation in four types, Path, Query, Header andCookie1. In this work, only Path and Query parameters are considered to researchthe functionality of Fuzzing in RAGO API. These parameters are clearly describable inString values and also comfortably testable, because they target only variable URIs.For the experiments, theOpenAPI document of a Pet Store2 is mainly used. Additionally,only GET and POST operations are tested to research basic functionality first.The main code at random testing is following:
Listing 5.1 Random Testing
String Uri = getServerUrl();
for (ParameterOb o : operationObject.getParameterObs()) {
ParameterObject p = o.parameterObject();
if (p.getIn().equals("path"))
Uri = p.randomPathParameter(Uri);

else if (p.getIn().equals("query"))
Uri = p.randomQueryParameter(Uri);

}
connect(Uri);

Listing 5.2 Attribute for Random Parameters
syn String ParameterObject.randomPathParameter(String uri); // Generate random Path and

save in URI

syn String ParameterObject.randomQueryParameter(String uri); // Generate random Query and
save in URI

1https://swagger.io/docs/specification/describing-parameters2https://petstore.swagger.io

18

https://swagger.io/docs/specification/describing-parameters
https://petstore.swagger.io

Initially, the generator for random testing computes a list of parameter objectsand iterates all elements in the list (Line 2, Listing 5.1). Subsequently, each iterationexamines in which type the parameter is and produces a random URI with synthesizedattributes (Listing 5.2). This URI is saved in a String variable (Line 4-7, Listing 5.1). Finally,the test generator sends a request with the generated URI (Line 9, Listing 5.1).Besides operations with requirements of request bodies, results of this implemen-tation made possible to observe that parameters were successfully randomized and
they produced documented status codes in Pet store2 (200, 400, 404, 405 status
codes). For the future work, constraints of schema (minItems, maxItems, minLengths,maxLengths, etc.) can be completely extended. In this approach, the generator con-siders only the existence of enumerations.

5.2 Parameter Inference

Random testing is a one of easiest way to test API and can be useful in some situations.However, it is not effective in REST API testing, because the coverage of the testedAPI would be particularly low and random values are unusually valid[11]. During theobservation in Section 5.1, it was clear to see that random testing mostly producesonly requests that receive only 4xx HTTP stauts codes from commercial APIs.To solve this problem, most of REST API testing approaches use a stateful process,because it enables to analyze elements of APIs and infer inputs which are more appro-priate than random inputs. There are several suggestions in Chapter 3. This frameworkinvestigates a inference of parameters with algorithms motivated by Specification-based Approach [4] and RESTTESTGEN [18]. Generally, it collects all responses andinferences parameters contributing the same schema of a succesful response. If thereis a same schema set in a request and a response, parameters of them are inferredby three strategies:
• Case insensitive• Id completion in a field name (e.g. if a property is named with "id", it gets anadditional field name available in the specification)• Stemming algorithm (e.g. pet and pets are considered as a same value.)

In the implementation of this work, case insensitive comparison and id completionare utilized to create the basic functionality. Stemming algorithm can be also extendedin the future. The follwing code in Listng 5.3 and List 5.4 shows how the parameterinference is compiled with predefined attributes:
Listing 5.3 Parameter Inference
generateRequests();
...
for (ResponseTuple t : getResponseTuples()) {
if (responseCode == 200) {
SchemaObject respSchema = t.getResponseSchema();
if (respSchema.getType().equals("array"))
list = writeDictionaryWithArray(respSchema, response.toString());

else
list.add(writeDictionary(respSchema, response.toString()));

}
}
...

19

List<String> paths = new ArrayList<>();
for (ParameterOb o : operationObject.getParameterObs()) {
ParameterObject p = o.parameterObject();
if (p.getIn().equals("path"))
paths = p.addInfPathParameters(pathRef, paths);

else if (p.getIn().equals("query"))
paths = p.addInfQueryParameters(pathRef, paths);

}
for (String path : paths)
connect(path);

Listing 5.4 Attribute writeDictionary
syn String OperationObject.writeDictionary(SchemaOb schema, String resp) {
...
return inferredParameter;

}

syn List<String> OperationObject.writeDictionaryWithArray(SchemaOb schema, String resp) {
List<String> list = new ArrayList<>();
Iterator<JsonNode> props = parseArrayNode(resp).elements();
...
while(props.hasNext())
list.add(writeDictionary(schema.itemsSchema(), props.next().toString()));

return list;
}

Listing 5.5 Case insensitive comparison
syn List<String> ParameterObject.addinfPathParameters(String pathRef,List<String> paths){
for(InferredParameter i:root().collectInferredParameters()){
String pathPart=pathRef.substring(pathRef.indexOf("{"),pathRef.indexOf("}")+1);
if(getName().equalsIgnoreCase(i.name()))
paths.add(pathRef.replace(pathPart,i.value()));

}
return paths;

}

Before it starts with the parameter inference, random tests of Section 5.1 aregenerated first (Line 1, Listing 5.3). During this execution, the status code of a responseis checked if it is a successful response with 200 status code (Line 4, Listing 5.3).Afterwards, the response schema of returned values is also checked. If it is in typearray, the function "writeDictionary" is iterated, otherwise it only executed once (Line 6-9, Listing 5.3). The attribute "writeDictionary" saves the returend values of a successfulresponse in seperate properties and write them in a dictionary (e.g. properties "id"and "name" are seperately stored with their value in the dictionary). If the schemaof a response provides a reference of a schema object, the field name gets a nameof a reference as prefix (Listing 5.4). Subsequently, this implementation does thesimilar way of execution in random testing at the generation phase. Firstly, it iteratesall parameter objects (Line 14, Listing 5.3) and examines whether the parameter typeis Path or Query (Line 16-19, Listing 5.3). Both attributes return URIs with parametervalues inferred by the dictionary and case insensitive comparison (Line 4, Listing 5.5).Generated URIs are put in a list. Lastly, the generator attribute sends requests withthe URIs and starts with observation (Line 20-21, Listing 5.3).

20

As results, the test case generator with parameter inference implemented in thisframework could create maximum over 300 acceptable URIs for the parameter
petId in the selected API, pet store2, at the operation getPetById. It generated alsonumerous requests denied by the server. After the observation of several executioniterations, it can be assumed that the API with this operation sends 200 or 404 statuscodes randomly or according to some rules, because a same URI provided statuscodes in that way.

21

6 Suitability of RAGs for OpenAPI
Testing

To evaluate how constructive and suitable RAGs are for OpenAPI testing, we reviewresearch questions in following sections. In Section 6.1, results for RQ1 and RQ2 aresummarized. In Section 6.2, RAG’s features that were helpful at implementing andfeatures that could be extended more in RAGO API are discussed.

6.1 Feasibility

RQ1 : Which approaches and techniques for automated tests of OpenAPI specifi-
cations are researched and developed so far?

The results of current existing approaches are shown in Table 3.1. As we can see,most of current approaches to test OpenAPI are in black-box and use Fuzzing methodto generate test cases. There are differences between approaches at test generationphase.Several of them inference parameters or operations or use test model generation.They also have differences at bug types. They all consider 500 status codes as bugs,but, three of them consider 200 status codes in test cases expected errors and 4xxstatus codes in test cases expected successful responses as bugs. Exact bug reportsof approaches which experimented with industrial APIs excluded Property-basedApproach formulate that they can be interesting research targets combined with RAG.
RQ2 : Are suggested testing approaches from the literatures also available in RAG?

To determine an answer of this question, we have constructed a data structurefor OpenAPI specification in Chapter 4 to parse OpenAPI documents and validated
the parser with 974 commercial APIs, i.e. the parser taken an OpenAPI documentreturns the same elements except elements with empty values and sibling elements ofreferences in anOpenAPI document. The input and output documents still semanticallyare same. In Chapter 5, we have also implemented two Fuzzing approaches (RandomTesting, Parameter Inference). Parameter Inference is motivated by Specification-based Approach[4] and RESTTESTGEN[18], where seperate elements of responsesare collected and used as inputs in a parameter with the same schema of a response.

22

Several approaches are based on their own metamodels. It is not clear yet, whethersuch model-based approaches could be developed in RAGs. For implementing meta-model generations of approaches in RAGs, JastAdd frameworks [8], [15] could behelpful to transform a model to another model. It is worthful to discuss and researchhow such frameworks developed already could be applied to those model-basedapproaches, because it would save an enormous amount of effort at implementing.

6.2 Benefits

RQ3 : Which advantages can RAG provide with its features at expressing testing
approaches?

During the implementation phase of parameter inference, RAG was beneficial atwriting codes. At writing codes for parser and back-transformation, attributes could notbe applied, because the functional parts change the structure of AST, which conflicts tothe definition of attribute and also in JastAdd. So, it could not be realized that attributescan be practical in this time. But, following attributes and features of JastAdd werehelpful to construct the generators and implement them:
• As long as a returning value can be called or storable by an AST node, the syntaxin RAG is reduced with an equals sign and simpler than in common programminglanguage. Therefore, the source codes are compact. To compare how RAG couldbe implemented effectively, see the implementation of an attribute in this workin Listing 6.1 and how it is defined in common Java description in Listing 6.2.• To iterate all elements available in a node, an inherited attribute facilitated thewriting effort. Paths Objects are child nodes of an OpenAPI Object, so, all thatshould have been done was only two lines of code instead of writing an extrafor-loop. See Listing 6.3.• Nodes described as References could refer objects with a collection attribute.Listing 4.1 shows how attributes for such purpose look like.

Listing 6.1 Attribute InferredParameter.value()
syn String InferredParameter.value() = getParameter().substring(

getParameter().indexOf("?") + 1);

Listing 6.2 InferredParameter.value() in Java
Class InferredParameter {
...
constructor;
...
public String value() {
return getParameter().substring(getParameter().indexOf("?") + 1);

}
}

Listing 6.3 Inherited Attribute in Paths Object
inh boolean PathsObject.inferUrl();
eq OpenAPIObject.getPathsObject(int i).inferUrl(){
...

}

23

Additionally, JastAdd can easily extend the grammars. There are several approachesto extend grammars with JastAdd, e.g. [5]. Therefore, JastAdd could also extend thegrammar proposed in this paper in that way. Besides it, the grammar could be simplyanalyzed by JastAdd. Analyses suggested in RAG [15], [7], e.g. Name Analysis, TypeAnalysis, might also be usable at parameter inference, which the name inference inthis paper uses the similar pattern as Name Analysis (Lookup). Relational ReferenceAttribute Grammars [14] could improve references and enable to build a new testmodel and connect it to the OpenAPI model implemented in this paper, parallel to[8], [15]. A recently invented framework, RagConnect, enables to connect RAG-basedmodels to models with other basis [17]. Since version 0.2.1, it has a new modelconnection with REST and might help at generating test cases, because test casesare based on requests and responses of REST APIs. All of these extensions are opentopics. So, it might be worthful to discuss and research how they can be used intoOpenAPI Testing to suggest tests with a better quality.

24

7 Conclusion

In this paper, we have researched which approaches to test REST APIs documentedby OpenAPI are developed so far. Most of approaches are based on Fuzzing anduse concepts e.g. Parameter Inference, Operation Dependency Inference, ModelTransformations, Stateful Dynamic Analysis, etc. to get more sensible results thanresults in random testing.RAGO API is a first framework that configures OpenAPIs in RAG generates randomtest requests of an API descriebed in OpenAPI and infers parameters by responsesin the API. The OpenAPI model is validated by 974 APIs selected in the repository ofapis.guru5. This OpenAPI model could be the basis of published testing approachesintroduced in this paper or any other test methods and be extended with JastAddframeworks released already publicly. We have presented an example of an Fuzzingapproach and usage of RAGs in attributes and could generate requests of a pet store2and expected responses in this server wheremaximum over 300 valid requests were
inferred. In this work, collection attributes were the most helpful attributes, becauseit simplified the implementation of references used for grammar and parameterinference.Finally, we have presented several suggestions to extend this tool intended toimprove basic functionalities e.g. references with [14] and also to develop new ap-proaches e.g. model transformation with [8], [15], [17]

25

Bibliography
[1] Andrea Arcuri. “RESTful API automated test case generation with EvoMaster”. In:

ACM Transactions on Software Engineering and Methodology (TOSEM) 28.1 (2019),pp. 1–37.
[2] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. “Restler: Statefulrest api fuzzing”. In: 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE. 2019, pp. 748–758.
[3] Anirban Basu. Software Quality Assurance, Testing and Metrics. 2015.
[4] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. “Automaticgeneration of test cases for REST APIs: A specification-based approach”. In: 2018

IEEE 22nd international enterprise distributed object computing conference (EDOC).IEEE. 2018, pp. 181–190.
[5] Torbjörn Ekman and Görel Hedin. “The jastadd extensible java compiler”. In:

Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages and applications. 2007, pp. 1–18.

[6] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. University of California, Irvine, 2000.

[7] Niklas Fors, Emma Söderberg, and Görel Hedin. “Principles and patterns ofJastAdd-style reference attribute grammars”. In: Proceedings of the 13th ACM
SIGPLAN International Conference on Software Language Engineering. 2020, pp. 86–100.

[8] Sebastian Götz et al. “A JastAdd-and ILP-based Solution to the Software-Selectionand Hardware-Mapping-Problem at the TTC 2018.” In: TTC@ STAF. 2018, pp. 31–36.
[9] Görel Hedin. “An introductory tutorial on JastAdd attribute grammars”. In: Interna-

tional Summer School on Generative and Transformational Techniques in Software
Engineering. Springer. 2009, pp. 166–200.

[10] Görel Hedin. “Reference attributed grammars”. In: Informatica (Slovenia) 24.3(2000), pp. 301–317.
[11] Stefan Karlsson, Adnan Čaušević, and Daniel Sundmark. “QuickREST: Property-based test generation of OpenAPI-described RESTful APIs”. In: 2020 IEEE 13th

International Conference on Software Testing, Validation and Verification (ICST). IEEE.2020, pp. 131–141.

26

[12] Donald E Knuth. “Semantics of context-free languages”. In: Mathematical systems
theory 2.2 (1968), pp. 127–145.

[13] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. “RESTest: Black-box constraint-based testing of RESTful Web APIs”. In: International Conference
on Service-Oriented Computing. Springer. 2020, pp. 459–475.

[14] Johannes Mey et al. “Continuous model validation using reference attributegrammars”. In: Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering. 2018, pp. 70–82.

[15] JohannesMey et al. “Reusing Static Analysis across Different Domain-Specific Lan-guages using Reference Attribute Grammars”. In: arXiv preprint arXiv:2002.06187(2020).
[16] K.A Saleh. Software Engineering. J. Ross, 2009, pp. 224–241.
[17] René Schöne et al. “Connecting conceptual models using relational referenceattribute grammars”. In: Proceedings of the 23rd ACM/IEEE International Conference

onModel Driven Engineering Languages and Systems: Companion Proceedings. 2020,pp. 1–11.
[18] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. “RestTestGen: auto-mated black-box testing of RESTful APIs”. In: 2020 IEEE 13th International Confer-

ence on Software Testing, Validation and Verification (ICST). IEEE. 2020, pp. 142–152.

27

	Title page
	Contents
	Introduction
	Background
	Software Testing
	REST API
	OpenAPI Specification
	Reference Attribute Grammar

	Current Approaches for OpenAPI Testing
	Specification-based Approach
	Property-based Approach
	Constraint-based Approach
	Operation Dependency Graph Approach
	Stateful REST API Fuzzer
	Summary

	RAGO API
	Grammar
	Process, Implementation
	Validation

	Test Methods
	Random Testing
	Parameter Inference

	Suitability of RAGs for OpenAPI Testing
	Feasibility
	Benefits

	Conclusion
	Bibliography

