diff --git a/tools/sensor-mock/mqtt_random_publisher.py b/tools/sensor-mock/mqtt_random_publisher.py index bc5de8b684200df46bd769e5beb632fb70a85235..002fa4c21a1603edb4d88209803cc7a4ad042bab 100644 --- a/tools/sensor-mock/mqtt_random_publisher.py +++ b/tools/sensor-mock/mqtt_random_publisher.py @@ -5,7 +5,7 @@ import paho.mqtt.client as mqtt # MQTT Configuration BROKER = "test.mosquitto.org" # Replace with your broker's address PORT = 1883 -TOPIC = "random/float" +TOPIC = "mocksensor" # MQTT Client Setup client = mqtt.Client() diff --git a/tools/timeline/.ipynb_checkpoints/timeline-real-runtime-checkpoint.ipynb b/tools/timeline/.ipynb_checkpoints/timeline-real-runtime-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..bf53a1ea9720a80e5842f35df0c3bf79c184c05b --- /dev/null +++ b/tools/timeline/.ipynb_checkpoints/timeline-real-runtime-checkpoint.ipynb @@ -0,0 +1,784 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import datetime\n", + "\n", + "labelprops = dict(facecolor='white', alpha=0.8, linewidth=None,edgecolor='white', pad=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def draw_brace(ax, xspan, yy, text):\n", + " \"\"\"Draws an annotated brace on the axes.\"\"\"\n", + " xmin, xmax = xspan\n", + " xspan = xmax - xmin\n", + " ax_xmin, ax_xmax = ax.get_xlim()\n", + " xax_span = ax_xmax - ax_xmin\n", + "\n", + " ymin, ymax = ax.get_ylim()\n", + " yspan = ymax - ymin\n", + " resolution = 601# int(xspan/xax_span*2000)*2+1 # guaranteed uneven\n", + " beta = 6000./xax_span # the higher this is, the smaller the radius\n", + "\n", + " \n", + " \n", + " x = np.linspace(xmin, xmax, resolution)\n", + " x_half = x[:int(resolution/2)+1]\n", + " y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))\n", + " + 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))\n", + " y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))\n", + " \n", + " y = yy + (.05*y - .01)*yspan # adjust vertical position\n", + "\n", + " ax.autoscale(False)\n", + " ax.plot(x, y, color='black', lw=1)\n", + "\n", + " if text:\n", + " ax.text((xmax+xmin)/2., yy+.07*yspan, text, ha='center', va='bottom', bbox=labelprops)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[9.167999982833862, 9.29699993133545, 9.428999900817871, 18.098999977111816, 18.43999981880188, 18.782999992370605, 26.736999988555908, 27.003999948501587, 38.21399998664856, 38.36699986457825, 38.3989999294281, 38.46000003814697, 38.519999980926514, 38.6949999332428, 38.88499999046326]\n", + "[-3.5, -4.3, -5.1, -3.5, -4.3, -5.1, -3.5, -4.3, -3.5, -4.3, -5.1, -5.9, -6.7, -7.5, -8.3]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAALusAAAMrCAYAAAB84MEtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZSU5Zk34F8VrTRbFeDWCiqicTeuo2Li4OBCIC4cF8YtjrvGLYjLaDSJyygx40LARJzRgI7RjHFJ1DhuUVzQMCK4RBjFREQDJhqlKopGlvr+mGN/YRBDQ2NR5rrO4TT9PPd9v79qnz/KpuqtQq1WqwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkGx3gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFzFegcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHEV6x0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMZVrHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpXsd4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhcxXoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBxFesdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDG1VTvAAAA0KgWLlyYWbNmpVu3bikUCvWOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtqlar5U9/+lPWWWedFIvFJdY1fYaZAADgc2XWrFlZd9116x0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFao119/Pb17917iftNnmAUAAD5XunXrluR/n3SXSqU6pwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA9lWtVrPuuuumW7dun1rX9BnlAQCAz51CoZAkKZVKKZVKdU4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtGoVD41P3iZ5QDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM+hYr0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANC4ivUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDjKtY7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNq1jvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0rmK9AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQuIr1DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4yrWOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjatY7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANK5ivQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LiK9Q4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOMq1jsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI2rWO8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSuYr0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANC4ivUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDjKtY7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNq1jvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0rmK9AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQuIr1DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4yrWOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjatY7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANK5ivQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LiK9Q4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOMq1jsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI2rWO8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSuYr0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANC4ivUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDjKtY7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNq1jvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0rmK9AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQuIr1DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4yrWOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjatY7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANK5ivQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LiK9Q4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOMq1jsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI2rWO8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSuYr0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANC4iss7YMGCBXn22Wfz7rvvtkceAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpIsa0Nw4YNy/XXX58kWbBgQfr375/tttsu6667bsaPH9/e+QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYiRXb2nDbbbdl6623TpLcfffdefXVV/M///M/GTZsWM4777x2DwgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAyqvY1oa33347LS0tSZJ77703Bx10UDbeeOMcc8wxeeGFF9o9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArr2JbG9Zaa61MnTo1CxYsyH333Zc99tgjSTJ37tx06NCh3QMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsPJqamvDUUcdlaFDh2bttddOoVDInnvumSSZOHFiNt1003YPCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDKq6mtDRdccEG23HLLvP766znooIPSsWPHJEmHDh1yzjnntHtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFZehVqtVqt3CAAAaETVajXlcjmVSiWlUqnecQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgXVWr1ZTL5VQqlZRKpSXWNS3NsFGjRi31hU877bSlrgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgsRVqtVrtrxVtsMEGSzesUMhvf/vb5Q4FAACNoFqtplwup1KppFQq1TsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSrarWacrmcSqWSUqm0xLqmpRn26quvtlswAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4/ivUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDjalqaouHDhy/1wCuvvHKZwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWJqWpmjKlClLNaxQKCxXGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaS9PSFD3yyCMrOgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADahY7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANK6mZWl6+umn89Of/jQzZ87MRx99tMjeHXfc0S7BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFj5Fdva8JOf/CRf+tKXMnXq1Nx5552ZN29epk6dmocffjjlcnlFZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJVVsa8Oll16aq666Kvfcc09WXXXVfP/738+0adMydOjQrLfeeisiIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArqWJbG37zm9/kq1/9apKkY8eOef/991MoFHL66afn3/7t39o9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArr2JbG3r27Jk//elPSZJevXrl17/+dZJkzpw5mTt3bvumAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCl1tTWhl133TUPPvhgttpqqwwdOjTf+MY38vDDD+fBBx/M7rvvviIyAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCSamprw9VXX50PP/wwSXLuuedmlVVWyRNPPJH9998/3/rWt9o9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArr0KtVqvVOwQAADSiarWacrmcSqWSUqlU7zgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0K6q1WrK5XIqlUpKpdIS64pLO3DWrFk588wzU61WF9urVCo566yz8vvf/37Z0gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQkIpLW3jllVemWq2mVCottlcul/OnP/0pV155ZbuGAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDlVlzawvvuuy9HHHHEEvePOOKI3HPPPe0SCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDGUFzawldffTXrrbfeEvd79+6dGTNmtEcmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpEcWkLO3XqlBkzZixxf8aMGenUqVN7ZAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlVafPn0ycuTIesf4zBQKhfzsZz9r13mFQiHdu3dvU98FF1zQ2vu39PMHAAAAAAAAAGgExaUt3GmnnfIf//EfS9y/8cYbs+OOO7ZLKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/7v99tuz0047pVwup1u3btliiy1yxhlnfCbXnj17dgYNGtSuM8eOHZuXX355kbVHH30022+/fZqbm9O3b9+MGTNmkf0zzzwzs2fPTu/evds1CwAAAAAAAAAAy69paQvPPPPM7LnnnimXyznrrLOy1lprJUl+//vf53vf+17GjRuXBx54YIUFBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC/RQ899FAOPvjgXHrppdl3331TKBQyderU/PKXv1yuufPmzcsqq6zyV+taWlqW6zqfpHv37llzzTVbv3/11VczePDgHHfccbnpppsyYcKEnHTSSVljjTVywAEHJEm6du2arl27pkOHDu2eBwAAAAAAAACA5VNc2sJ/+Id/yA9+8INcffXVWWedddKjR4/07Nkz66yzTn7wgx9k9OjRGTBgwIrMCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr3G677ZZTTjklp5xySrp3757VVlst559/fmq12ifWX3nlldlqq63SpUuXrLvuujnppJPy3nvvLVIzYcKE9O/fP507d06PHj0ycODAvPvuu0mSWq2W733ve+nbt286deqUrbfeOrfddltr7z333JMvf/nLOeuss7LJJptk4403zpAhQzJ69OhFrnH33Xdn++23T3Nzc/r27ZsLL7ww8+fPb90vFAoZM2ZM9ttvv3Tp0iUXXXRRevfunTFjxiwyZ/LkySkUCvntb3/b2vezn/2sdf+NN97IwQcfnJ49e6ZLly7ZYYcdMnHixKXO8UnGjBmT9dZbLyNHjsxmm22WY489NkcffXQuv/zyT+0DAAAAAAAAAGDl0NSW4hNOOCF77713br311rzyyiup1WrZeOONc+CBB6Z3794rKiMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfKZuuOGGHHPMMZk4cWImTZqU448/Puuvv36OO+64xWqLxWJGjRqVPn365NVXX81JJ52Us88+Oz/84Q+TJM8++2x23333HH300Rk1alSampryyCOPZMGCBUmS888/P3fccUeuueaafOELX8hjjz2Www8/PGussUb69++flpaW3Hzzzfn1r3+dLbfc8hPz3n///Tn88MMzatSo7LrrrvnNb36T448/Pknyne98p7XuO9/5TkaMGJGrrroqHTp0yAcffJAf//jHOfHEE1trbr755vTr1y99+/Zd7Drvvfde+vfvn169euWuu+5KS0tLJk+enIULF7Ypx//11FNPZa+99lpkbeDAgbn++uszb968rLLKKkvsBQAAAAAAAACg/gq1Wq1W7xAAANCIqtVqyuVyKpVKSqVSveMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO1kt912yx/+8Ie8+OKLKRQKSZJzzjknd911V6ZOnZo+ffpk2LBhGTZs2Cf2//SnP83Xv/71vP3220mSQw89NDNnzswTTzyxWO3777+f1VdfPQ8//HD69evXun7sscdm7ty5ufnmm/P+++9n6NChuffee7P++utn5513zl577ZXDDjssHTt2TJL8/d//fQYNGpRzzz23dcZNN92Us88+O7NmzUqSFAqFDBs2LFdddVVrzZQpU7L99tvn1Vdfzfrrr5+FCxdmvfXWyze/+c2cdNJJrX133nlnhgwZkn/7t3/LmWeemRkzZqRnz56LPZ6lzfHxvI9tvPHGOfLII/PNb36zde3JJ5/Ml770pcyaNStrr7126/pf+/kDAAAAAAAAANB+qtVqyuVyKpVKSqXSEuuKn2EmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgIO++8cwqFQuv3/fr1y/Tp07NgwYLFah955JHsueee6dWrV7p165Yjjjgif/zjH/P+++8nSZ599tnsvvvun3idqVOn5sMPP8yee+6Zrl27tv658cYb85vf/CZJ0qVLl/ziF7/IK6+8kvPPPz9du3bNGWeckR133DFz585NkjzzzDO56KKLFplx3HHHZfbs2a01SbLDDjsscv1tt902m266aW655ZYkyaOPPpo//OEPGTp06CfmffbZZ7PtttumZ8+en7i/tDk+yV/+vJOkVqt94joAAAAAAAAAACufpnoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBG9dprr2Xw4ME58cQTc/HFF6dnz5554okncswxx2TevHlJkk6dOi2xf+HChUmSX/ziF+nVq9ciex07dlzk+w033DAbbrhhjj322Jx33nnZeOON85//+Z856qijsnDhwlx44YXZf//9F7tGc3Nz69+7dOmy2P5hhx2Wm2++Oeecc05uvvnmDBw4MKuvvvon5v20x/Lx41maHP9XS0tL3nzzzUXW/vCHP6SpqSmrrbbap14TAAAAAAAAAID6a6p3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABY2fzqV79a7PsvfOEL6dChwyLrkyZNyvz583PFFVekWCwmSW699dZFar74xS/ml7/8ZS688MLFrrP55punY8eOmTlzZvr377/U+fr06ZPOnTvn/fffT5Jst912eemll7LRRhst9YyPHXrooTn//PPzzDPP5Lbbbss111yzxNovfvGLue666/LOO++kZ8+ei+0va45+/frl7rvvXmTtgQceyA477JBVVlmlTbMAAAAAAAAAAPjsNdU7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsbF5//fUMHz48J5xwQiZPnpzRo0fniiuuWKxuww03zPz58zN69Ojss88+mTBhQsaMGbNIzbnnnputttoqJ510Uk488cSsuuqqeeSRR3LQQQdl9dVXz5lnnpnTTz89CxcuzJe//OVUq9U8+eST6dq1a/7pn/4pF1xwQebOnZvBgwdn/fXXz5w5czJq1KjMmzcve+65Z5Lk29/+dvbee++su+66Oeigg1IsFvP888/nhRdeyL/8y7986mPdYIMNsssuu+SYY47J/Pnzs99++y2x9pBDDsmll16aIUOGZMSIEVl77bUzZcqUrLPOOunXr98y5zjxxBNz9dVXZ/jw4TnuuOPy1FNP5frrr88tt9zyqdkBAAAAAAAAAFg5FJelac6cObnuuuty7rnn5p133kmSTJ48Ob/73e/aNRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MMRRxyRDz74IDvuuGNOPvnknHrqqTn++OMXq9tmm21y5ZVX5rLLLsuWW26ZH//4xxkxYsQiNRtvvHEeeOCBPPfcc9lxxx3Tr1+//PznP09TU1OS5OKLL863v/3tjBgxIptttlkGDhyYu+++OxtssEGSpH///vntb3+bI444IptuumkGDRqUN998Mw888EA22WSTJMnAgQNzzz335MEHH8zf/d3fZeedd86VV16Z9ddff6ke72GHHZbnnnsu+++/fzp16rTEulVXXTUPPPBA1lxzzQwePDhbbbVVvvvd76ZDhw7LlWODDTbIvffem/Hjx2ebbbbJxRdfnFGjRuWAAw5YqvwAAAAAAAAAANRXoVar1drS8Pzzz2ePPfZIuVzOjBkz8tJLL6Vv37751re+lddeey033njjisoKAAArlWq1mnK5nEqlklKpVO84AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA72W233bLNNttk5MiR9Y7yuVQoFHLnnXdmyJAhy9Tfp0+fDBs2LMOGDWvXXAAAAAAAAAAALK5araZcLqdSqaRUKi2xrtjWwcOHD8+RRx6Z6dOnp7m5uXV90KBBeeyxx5YtLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwN+OQQw5J796929Rz6aWXpmvXrpk5c+YKSgUAAAAAAAAAwLJqamvD008/nWuvvXax9V69euXNN99sl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOfT9OnTkyQdOnRoU9+JJ56YoUOHJknWWGONds8FAAAAAAAAAMCya2prQ3Nzc6rV6mLrL730kheHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDwxo8fX+8In2sbbbTRMvX17NkzPXv2bOc0AAAAAAAAAAC0h2JbG/bbb79cdNFFmTdvXpKkUChk5syZOeecc3LAAQe0e0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNktXLgwH330Ub1jAAAAAAAAAADwOVZsa8Pll1+et956K2uuuWY++OCD9O/fPxtttFG6deuWSy65ZEVkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACW0ahRo7Lttttm1qxZ9Y4CAAAAAAAAAMDnVKFWq9WWpfHhhx/O5MmTs3Dhwmy33XbZY4892jsbAACs1KrVasrlciqVSkqlUr3jAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAs5sMPP8y6666bt99+O+ecc05GjBhR70gAAAAAAAAAADSQarWacrmcSqWSUqm0xLpCrVarfYa5AADgc2Npn3QDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTLuHHjcvTRR2efffbJhAkT8vrrr6dTp071jgUAAAAAAAAAQIOoVqspl8upVCoplUpLrCu2dfBpp52WUaNGLbZ+9dVXZ9iwYW0dBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsALVaLaNGjcrgwYNzxRVX5J133sktt9xS71gAAAAAAAAAAHwOFdvacPvtt+dLX/rSYuu77LJLbrvttnYJBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsnwkTJmTKlCk59dRTs9FGG2Xw4MEZNWpUarVavaMBAAAAAAAAAPA5U2xrwx//+MeUy+XF1kulUt5+++12CQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALJ9Ro0Zlk002yZ577pkkOe200/Lcc8/l8ccfr3MyAAAAAAAAAAA+b4ptbdhoo41y3333Lbb+X//1X+nbt2+7hAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlt0bb7yRO+64I6eeemqKxWKSZM8998ymm26a0aNH1zkdAAAAAAAAAACfN01tbRg+fHhOOeWUvPXWWxkwYECS5Je//GWuuOKKjBw5sr3zAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtdM0116RLly454ogjWtcKhUJOPfXUnHbaaZk5c2bWW2+9OiYEAAAAAAAAAODzpFCr1WptbbrmmmtyySWXZNasWUmSPn365IILLljkRS8AAPB5V61WUy6XU6lUUiqV6h0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBJ8sEHH2TdddfN4YcfnpEjRy6y995776VXr1456aSTMmLEiPoEBAAAAAAAAACgYVSr1ZTL5VQqlZRKpSXWFWq1Wm1ZL/LWW2+lU6dO6dq167KOAACAhrW0T7oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5LY8eOzTHHHJOXX345G2200WL7p59+em688ca88cYb6dSpUx0SAgAAAAAAAADQKKrVasrlciqVSkql0hLristzkTXWWCNdu3ZdnhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDup1WoZPXp0Bg8enI022ugTa04++eS8++67ueWWWz7jdAAAAAAAAAAAfF4VarVa7a8VbbfddvnlL3+ZHj16ZNttt02hUFhi7eTJk9s1IAAArKyq1WrK5XIqlUpKpVK94wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5Iknnsiuu+6a+++/P3vttdcS6/bZZ5+8/vrrmTJlSgqFwmeYEAAAAAAAAACARlKtVlMul1OpVFIqlZZY17Q0w/bbb7907Nix9e9euAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK4+FCxfmzjvvzHnnnZdNNtkke+yxx6fWn3rqqRk4cGCOPvronH/++dlwww0/o6QAAAAAAAAAAHweFWq1Wq3eIQAAoBFVq9WUy+VUKpWUSqV6xwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/gYtWLAgt956ay655JK8+OKL2X333XPFFVdk6623/tS+Wq2W0aNH59JLL83bb7+dQw89NOedd1422WSTzyg5AAAAAAAAAACNoFqtplwup1KppFQqLbGuUKvVam0ZfNRRR+Xwww/PgAEDUigUljsoAAA0qqV90g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8NfUarXMnz+/9e9/+fWT1tq6Bysz55RG4azSCJxTGoWzSiNwTmkEzimNwlmlETinNIoFCxakWq2mUqm0/pk1a1Z+8IMf5OWXX86gQYPyrW99K/369WvT3A8++CDXXXddLrvsssyaNStDhw7N3nvvnXK5nFKplHK5nHK5nM6dO6dQKCTJYl8/aa2te7Ayc05pFM4qjcA5pVE4qzQC55RG4azSCJxTGoWzysquUCikqamp3jEAAFgBqtVqyuVyKpVKSqXSEusKtTa+GmvffffNAw88kNVWWy0HH3xwvva1r2WbbbZZ3rwAANBwlvZJNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAx5555pmMHDkyM2bMSKVSSbVabf26cOHCescDAAAAAAAaTKFQyL777pvzzz8/O+yww3LN+vOf/5yxY8fmsssuy4wZM9onIAAAAAAA8Delubk5pVIp5XK59c+AAQNy8sknp1wu1zseAADLqFqtplwup1KppFQqLbGuUKvVam0dPmfOnNx66625+eab8/jjj2eTTTbJ4YcfnkMPPTR9+vRZntwAANAwlvZJNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAU089lYsvvjj/9V//lY022ij9+vVLuVxOqVRq/drc3JxCoZAky/11SWuwsnJOaRTOKo3AOaVROKs0AueURuGs0gicUxqBc0ojKBaLKZVKrf++UC6X061btzQ1NbXrdWq1Wj788MNUq9VUKpVUKpVUq9XMnTu3df8vv37SWlv3YEVxxvgsOGesaM4YnwXnjBXNGWNFc8b4LDhnrGjOGJ8F54wVbcGCBXnvvfcW+TeGt956K/fee286d+6cb3zjG/nGN76RHj161DsqAABtVK1WUy6XU6lUUiqVllhXqC3n/3m88cYbueWWW/KjH/0o06dPz/z585dnHAAANIylfdINAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPztevzxx3PRRRfloYceyuabb57zzjsv//iP/5gOHTrUOxoAAAAAAAAAAAAAAMAKN2vWrPzrv/5rrr322jQ1NeWUU07J6aefnjXWWKPe0QAAWErVajXlcjmVSiWlUmmJdcXluci8efMyadKkTJw4MTNmzMhaa621POMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HPj/vvvz9///d/nrbfeyk9/+tO88MILOfTQQ9OhQ4d6RwMAAAAAAAAAAAAAAPhMrLPOOrnqqqsyY8aMfP3rX8+oUaOy6667ZsGCBfWOBgBAOyvUarVaW5seeeSR3Hzzzbn99tuzYMGC7L///jnssMMyYMCAFIvFFZETAABWOtVqNeVyOZVKJaVSqd5xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICVzF577ZVKpZJf/epXKRQK9Y4DAAAAAAAAAAAAAABQdxMnTszOO++cn//859l3333rHQcAgKVQrVZTLpdTqVRSKpWWWNfU1sG9e/fOH//4xwwcODDXXntt9tlnnzQ3Ny9XWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4PJk2bVoefPDB3HTTTSkUCvWOAwAAAAAAAAAAAAAAsFLYaaedsvPOO2f06NHZd9996x0HAIB21NTWhm9/+9s58MAD07NnzxWRBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa3tVXX52WlpYcdNBB9Y4CAAAAAAAAAAAAAACwUjn11FNz2GGHZerUqdl8883rHQcAgHZSbEvx/Pnzc9JJJ2XWrFkrKg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANLQ5c+bkhhtuyIknnphVV1213nEAAAAAAAAAAAAAAABWKgceeGBaWloyevToekcBAKAdFdtS3NTUlPXXXz8LFixYUXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKGNHTs2H330UU444YR6RwEAAAAAAAAAAAAAAFjprLrqqvn617+eG2+8Me+++2694wAA0E6KbW04//zzc+655+add95ZEXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEtWLAgV199dYYOHZqWlpZ6xwEAAAAAAAAAAAAAAFgpnXDCCZk3b17Gjh1b7ygAALSTQq1Wq7WlYdttt80rr7ySefPmZf3110+XLl0W2Z88eXK7BgQAgJVVtVpNuVxOpVJJqVSqdxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCVw9913Z999983EiROz44471jsOAAAAAAAAAAAAAADASutrX/taJkyYkOnTp6dDhw71jgMAwBJUq9WUy+VUKpWUSqUl1jW1dfCQIUOWJxcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfG6NHj06O+20U3bcccd6RwEAAAAAAAAAAAAAAFipnXbaabnpppvyi1/8Ivvuu2+94wAAsJwKtVqtVu8QAADQiKrVasrlciqVSkqlUr3jAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1NnXq1GyxxRa56aabcthhh9U7DgAAAAAAAAAAAAAAwEqvX79+6dKlSx566KF6RwEAYAmq1WrK5XIqlUpKpdIS64rLMnzOnDm57rrrcu655+add95JkkyePDm/+93vli0tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADS4q6++Oi0tLTnooIPqHQUAAAAAAAAAAAAAAKAhXHrppVlllVXy2muv1TsKAADLqamtDc8//3z22GOPlMvlzJgxI8cdd1x69uyZO++8M6+99lpuvPHGFZETAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFZac+bMyQ033JCzzz47q666ar3jAAAAAAAAAAAAAAAANITddtstu+66awqFQr2jAACwnIptbRg+fHiOPPLITJ8+Pc3Nza3rgwYNymOPPdau4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgEfzoRz/KvHnzcsIJJ9Q7CgAAAAAAAAAAAAAAQMMoFAqp1WqZN29earVaveMAALAcim1tePrppz/xzbm9evXKm2++2S6hAAAAAAAAAAAAAAAAgM+n3XbbLcOGDWvXeYVCIYVCIc8+++xS940fP761b8iQIe2WBwAAAAAAAAAAAD42bty4dO/evd4xkvz/183NmTOnXecty+vwlvW1fwAAAADLok+fPhk5cuRS1a5Mv8/5JIVCIT/72c/adV6hUGjzY77gggtae5f2ZwsAAADwt2T99dfPueeem5aWlnpHAQAAAAAAAAAAAAAAWCovvfRSZs6cucz9F1xwQbbZZptF5k2aNCmTJk3K3Llzl3rOBx98kF//+td55pln8sorryxznmU1Y8aMleqeqe43AgA0qmJbG5qbm1OtVhdbf+mll7LGGmu0SygAAAAAAAAAAAAAAABgxZkyZUr23nvvrLnmmmlubk6fPn3yj//4j3n77bdX+LXvuOOOXHzxxe0687jjjsvs2bOz5ZZbtq7NnDkz++yzT7p06ZLVV189p512Wj766KPW/V122SWzZ8/O0KFD2zULAAAAAAAAAAAAy27cuHFL/KCOV155JUcddVR69+6djh07ZoMNNsghhxySSZMmtWuGPn36rLAP/FiwYEFGjBiRTTfdNJ06dUrPnj2z8847Z+zYsSvken/p49fNlcvldp370ksvZdy4cYus/fCHP8wGG2yQ5ubmbL/99nn88ccX2b/jjjvy3//93+2aAwAAAGBJnn766Rx//PHtNu/222/PTjvtlHK5nG7dumWLLbbIGWec0W7zP83s2bMzaNCgdp05duzYvPzyy4usPfroo9l+++3T3Nycvn37ZsyYMYvsn3nmmZk9e3Z69+7drlkAAAAAPi8OOOCAXHjhhfWOAQAAAAAAAAAAAAAANJh6fvb4hhtumF69erXrzI4dO+a2227Ldtttl+bm5rS0tGTAgAG5+uqr88wzz+TZZ5/NzJkzs3Dhwtaerl27Zuutt06PHj2W+jpHHnlkhgwZ0q7Z/5L7jbjfCADQdsW2Nuy333656KKLMm/evCRJoVDIzJkzc8455+SAAw5o94AAAAAAAAAAAAAAAABA+/joo4/yhz/8IXvssUdWX3313H///Zk2bVp+9KMfZe21187cuXOXa/bS6NmzZ7p167bM1/kknTt3TktLS5qampIkCxYsyFe/+tW8//77eeKJJ/KTn/wkt99++yJvPl911VXT0tKSTp06tWsWAAAAAAAAAAAA2t+kSZOy/fbb5+WXX861116bqVOn5s4778ymm276mX0wyV9asGDBIh/isrQuuOCCjBw5MhdffHGmTp2aRx55JMcdd1zefffdZc5Sq9Uyf/78v1r38evmCoXCMl/rk6y55prp3r176/f/+Z//mWHDhuW8887LlClTsuuuu2bQoEGZOXNma03Pnj2zxhprtGsOAAAAgCVZY4010rlz53aZ9dBDD+Xggw/OgQcemP/+7//OM888k0suuWSp32O5JB9/Jtxf09LSko4dOy7Xtf6v7t27Z80112z9/tVXX83gwYOz6667ZsqUKfnmN7+Z0047LbfffntrTdeuXdPS0pIOHTq0axYAAAAAAAAAAAAAAAAAAACAv0Urw2ePNzU1teu9JKrVag488MD8+Mc/zrnnnpvJkyfn0UcfTf/+/fOv//qvWXvttdO3b9+8++67eeONN1r7isViVllllRSLxXbL8rGlvcfHX3K/kf/lfiMAQFu1+dnc5ZdfnrfeeitrrrlmPvjgg/Tv3z8bbbRRunXrlksuuWRFZAQAAAAAAAAAAAAAAICV1m233ZatttoqnTp1ymqrrZY99tgj77//fpJk7Nix2WyzzdLc3JxNN900P/zhD1v7ZsyYkUKhkDvuuCP/8A//kM6dO2frrbfOU0891Vrz2muvZZ999kmPHj3SpUuXbLHFFrn33ntb9x999NHsuOOO6dixY9Zee+2cc845mT9/fuv+brvtllNOOSXDhw/P6quvnj333DNPPvlkqtVqrrvuumy77bbZYIMNMmDAgIwcOTLrrbdea+/UqVMzePDgdO3aNWuttVa+9rWv5e233/7U2YccckgOPvjgRX4+8+bNy+qrr56xY8e29g0bNqx1/89//nPOPvvsrLvuuunYsWO+8IUv5Prrr1/qHJ/kgQceyNSpU3PTTTdl2223zR577JErrrgi//7v/55qtfqpvQAAAAAAAAAAACy7P/3pTznssMPSpUuXrL322rnqqqsWed3YRx99lLPPPju9evVKly5dstNOO2X8+PFJkvHjx+eoo45KpVJJoVBIoVDIBRdckFqtliOPPDJf+MIX8vjjj+erX/1qNtxww2yzzTb5zne+k5///Oet13/hhRcyYMCA1tf0HX/88Xnvvfda94888sgMGTIkl19+edZee+2sttpqOfnkk1s/nGS33XbLa6+9ltNPP701Q5KMGzcu3bt3zz333JPNN988HTt2zGuvvZZ33303RxxxRHr06JHOnTtn0KBBmT59+hJ/PnfffXdOOumkHHTQQdlggw2y9dZb55hjjsnw4cNba2q1Wr73ve+lb9++6dSpU7beeuvcdtttrfvjx49PoVDI/fffnx122CEdO3bM9ddfn0KhkP/5n/9Z5HpXXnll+vTpk1qt1to3Z86c1v0JEyakf//+6dy5c3r06JGBAwfm3XffXaocS3LllVfmmGOOybHHHpvNNtssI0eOzLrrrptrrrnmr/YCAAAALIuP3+94yimnpHv37llttdVy/vnnp1arJUn69OmTkSNHttbPmTMnxx9/fNZaa600Nzdnyy23zD333POJs//4xz9mxx13zL777psPP/ww99xzT7785S/nrLPOyiabbJKNN944Q4YMyejRoxfpu/vuu7P99tunubk5ffv2zYUXXrjI+z8LhULGjBmT/fbbL126dMlFF12U3r17Z8yYMYvMmTx5cgqFQn7729+29v3sZz9r3X/jjTdy8MEHp2fPnunSpUt22GGHTJw4calzfJIxY8ZkvfXWy8iRI7PZZpvl2GOPzdFHH53LL7/8U/sAAAAAAAAAAAAAAAAAAAAAViY+e/z/zz7jjDPy1ltvtdbUarVcdtll6d27d+t9R7///e9n5syZrfcwffDBB/PFL36xdf+uu+5aZMbFF1+c1VdfPV26dMmQIUPy5ptvtt7vI0muuuqqvPHGG5k4cWL+6Z/+KZtvvnlaWlry1a9+NVOmTMmaa66ZUqmUbt265etf//oS7+/68X1h77///my22Wbp2rVrvvKVr2T27NlJkgsuuCA33HBDfv7zn7feT3b8+PGt/x1vvfXW7Lbbbmlubs5NN92UhQsXtt7ro2PHjtlmm21y3333LfEcud8IAMCyKba1oVQq5Yknnsjtt9+e7373uznllFNy77335tFHH02XLl1WREYAAAAAAAAAAAAAAABYKc2ePTuHHHJIjj766EybNi3jx4/P/vvvn1qtln//93/Peeedl0suuSTTpk3LpZdemm9961u54YYbFplx3nnn5cwzz8yzzz6bjTfeOIccckjrG49PPvnk/PnPf85jjz2WF154IZdddlm6du2aJPnd736XwYMH5+/+7u/y3HPP5Zprrsn111+ff/mXf1lk/g033JCmpqZMmDAh1157bVpaWjJ//vzceeedi7zx/P8+rv79+2ebbbbJpEmTct999+X3v/99hg4d+qmzDzvssNx111157733Wmvuv//+vP/++znggAM+8VpHHHFEfvKTn2TUqFGZNm1axowZ0/oYlzbH//XUU09lyy23zDrrrNO6NnDgwPz5z3/OM88886m9AAAAAAAAAAAALLvhw4dnwoQJueuuu/Lggw/m8ccfz+TJk1v3jzrqqEyYMCE/+clP8vzzz+eggw7KV77ylUyfPj277LJLRo4cmVKplNmzZ2f27Nmtr6978cUXc8YZZ6RYXPy22t27d0+SzJ07N1/5ylfSo0ePPP300/npT3+ahx56KKeccsoi9Y888kh+85vf5JFHHskNN9yQcePGZdy4cUmSO+64I717985FF13UmuFjc+fOzYgRI3LdddflxRdfzJprrpkjjzwykyZNyl133ZWnnnoqtVotgwcPzrx58z7x59PS0pKHH354kQ+W+b/OP//8jB07Ntdcc01efPHFnH766Tn88MPz6KOPLlJ39tlnZ8SIEZk2bVoOPPDAbL/99vnxj3+8SM3NN9+cQw89NIVCYbHrPPvss9l9992zxRZb5KmnnsoTTzyRffbZJwsWLGhTjr/00Ucf5Zlnnslee+21yPpee+2VJ598col9AAAAAMvr4/c7Tpw4MaNGjcpVV12V6667brG6hQsXZtCgQXnyySdz0003ZerUqfnud7+bDh06LFb7xhtvZNddd82mm26aO+64I83NzWlpacmLL76YX//610vMcv/99+fwww/PaaedlqlTp+baa6/NuHHjcskllyxS953vfCf77bdfXnjhhRx77LE5+OCDP/H3O/369Uvfvn0Xu857772X/v37Z9asWbnrrrvy3HPP5eyzz87ChQvblOP/euqppxb7/c7AgQMzadKkJf7eCwAAAAAAAAAAAAAAAAAAAGBl4rPHF529995754MPPljkvqM/+tGPcs455+T555/P6aefnrPPPju/+tWvWmecddZZGTZsWB5++OF069Ytl156aes9Om6++eZcfPHF+ed//uc8+eST2WSTTXLTTTflo48+SvK/9/i49957M2TIkEU+Z/y9995Lp06d0rNnzzQ1NSVJhg0blmnTpuWWW25Z4v1d586dm8svvzz/8R//kcceeywzZ87MmWeemSQ588wzM3To0HzlK19pvZ/sLrvs0tr7z//8zznttNMybdq0DBw4MN///vdzxRVX5PLLL8/zzz+fgQMHZt9998306dM/8WfufiPuNwIALJumZW0cMGDA/2Pv3uO/nA//jz8/786pT+Z86lutpMPoKCpzJo3wLRlSDJnDbE7bfLOfmUObfWVsNn5jWZGEkuNUzDEbOjlUCuW8HCZFotPn94ebz2+pSKqrD/f77dbN+31dr+t1Pd5v/9T7dl2vK3vvvffabAEAAAAAAAAAAAAAAIAq5V//+leWLFmSnj17plGjRkmSHXfcMUly4YUXZtCgQenZs2eSpEmTJpU3Fx9zzDGVc5x99tk58MADkyS/+tWv0rp167zwwgtp0aJFXnnllfTq1atyzv+8uflPf/pTGjZsmCuvvDJlZWVp0aJF3njjjfz85z/Peeedl1KplCRp1qxZfvvb3y7XPWDAgBx11FE56aST0qlTp+y9997p169fttxyyyTJVVddlfbt22fgwIGVxwwePDgNGzbMzJkz07x585XO3bRp02y00Ua57bbb0rdv3ySf3Jjdo0ePlJeXr/D9zZw5MzfffHPGjRuXfffdd4XPuLodnzVnzpzKz/Kpb33rW6lZs2bmzJmz0mMAAAAAAAAAAAD4at5///0MGTIkN954Y/bZZ58kyXXXXVf5QJQXX3wxw4cPz2uvvVa57eyzz869996b6667LgMHDkyDBg1SVlaWrbbaqnLeTx9U0qJFi889/7Bhw7Jw4cIMHTo0G220UZLkyiuvTI8ePXLJJZdUXlf2rW99K1deeWWqVauWFi1a5MADD8z999+f/v37Z5NNNkm1atVSv3795RqSZPHixfnTn/6UNm3aVHbdcccdGT9+fOUDWIYNG5aGDRtm9OjR6d279wqNl112WQ477LBstdVWad26dbp06ZJDDjkk3bt3T5IsWLAgl112Wf7+97+nc+fOST65ru7RRx/N//2//zd77LFH5VwXXHBB9ttvv8r3ffr0yZVXXpkLL7wwySfX6E2cODFDhw5d6ff129/+Nh07dsyf/vSnym2tW7f+0h3/6Z133snSpUtXuIZvyy23dP0eAAAAsE41bNgwv/vd71JWVpYddtghzzzzTH73u9+lf//+y42777778sQTT2T69OmV9yiu7MG0M2fOzH777ZdDDjkkV1xxRcrKypIkp512Wh555JHsuOOOadSoUXbdddfsv//+6dOnT2rVqpUkufjii3POOedU3kv67W9/OxdeeGF+9rOf5Ze//GXlOY466qgcd9xxle/79OmTyy67LC+//HIaNWqUZcuW5aabbsqAAQNW+plvvPHGvP3223nyySezySabJPnkvs9PrW7HZ63sHs0tt9wyS5YsyTvvvJOtt956lccCAAAAAAAAAAAAAAAAAAAAbAg8e3zFZ4/PmTMn8+fPT82aNXPZZZfl+uuvT7t27dK0adNsv/32ufvuuzNs2LCcccYZSZITTzwxhx12WMrLyzNgwIAceOCBqVu3bpJP1ljt1atXfvrTnyZJ2rRpkwcffDBz587NRx99lPnz52fevHlp2rTpcp9v8eLFqVGjRuX7559/PnfeeWf+8pe/ZOedd86mm25aub7ruHHj0q1bt8rjrr766sr5fvSjH+WCCy5IktSrVy916tTJxx9/vMJ6skly+umnV/6/TpJLL700P//5z3PEEUckSS655JI88MADufzyy/PHP/5xheOtN2K9EQBgzZRWd+Djjz+ev/3tb8ttGzp0aJo0aZItttgiJ554Yj7++OO1HggAAAAAAAAAAAAAAAAbqjZt2mSfffbJjjvumN69e+eaa67J3Llz8/bbb+fVV1/N8ccfn3r16lX+ueiii/Liiy8uN8dOO+1U+frTG4bfeuutJMmPf/zjXHTRRenatWt++ctf5umnn64cO3369HTu3DllZWWV27p27ZoPPvggr732WuW2jh07rtB98cUXZ86cObn66qvTqlWrXH311WnRokWeeeaZJMnEiRPzwAMPLNfeokWLJFmu/7Nz16hRI717986wYcOSJAsWLMjtt9+ePn36rPT7mzJlSqpVq5Y99thjpftXt2Nl/vN7+VRFRcVKtwMAAAAAAAAAAPDVzZo1K4sXL06nTp0qtzVo0CA77LBDkmTSpEmpqKhI8+bNl7su7KGHHvrca8IqKiqSrPy6sP80ffr0tGnTJhtttFHltq5du2bZsmWZMWNG5bbWrVunWrVqle+33nrryuv2Pk/NmjWXu+Zv+vTpqV69enbZZZfKbZtuuml22GGHTJ8+faVztGrVKs8++2z++c9/5gc/+EHefPPN9OjRIyeccEKSZNq0afnoo4+y3377LfcdDR06dIXv6LPX8B1xxBF5+eWX889//jNJMmzYsLRt2zatWrVaacuUKVOyzz77rHTfl+lYmc/+v3L9HgAAALCu7brrrsv9/tC5c+c8//zzWbp06XLjpkyZku22267ywcIrs3Dhwuy222459NBD8/vf/365eTfaaKPcfffdeeGFF/KLX/wi9erVy1lnnZVOnTrlww8/TPLJvZEXXHDBcr+r9O/fP//6178qxyQr/r7Trl27tGjRIsOHD0+SPPTQQ3nrrbdy+OGHr7RzypQpadeuXeWDcz9rdTtWZmW/76xsOwAAAAAAAAAAAAAAAAAAAMCGyLPHV3z2eN26dfPee+9Vrjvar1+/tGnTpnKe22+/Pa+88krlMdtvv33q1au30s///PPPp0WLFpk0aVLln2bNmiVJPv744y+1nmz16tXzne98p3Lsp+u7vvDCC5Xj6tatm6ZNm1a+X931ZD/7XcyfPz9vvPFGunbtutyYrl27rnI9WeuNWG8EAFgz1Vd34Pnnn58999wz3bt3T5I888wzOf7443PsscemZcuW+d///d9ss802Of/889dVKwAAAAAAAAAAAAAAAGxQqlWrlnHjxuWxxx7L2LFj84c//CHnnntu7rzzziTJNddck1122WWFY/5TjRo1Kl9/etPwsmXLkiQnnHBCunXrlrvvvjtjx47Nr3/96wwaNCinnXZaKioqVuvm44022mil7Ztuuml69+6d3r1759e//nXatWuXSy+9NEOGDMmyZcvSo0ePXHLJJSsc9+lN7auau0+fPtljjz3y1ltvZdy4caldu3blPUmfVadOnZVu/9TqdnzWVlttlccff3y5bXPnzs3ixYuz5ZZbfu45AQAAAAAAAAAAWDOreoDGp9uXLVuWatWqZeLEiStcS/fpg1dWpnnz5kk+eXhK27ZtP/f8q3p4x39u/8/r9j7d9+l1e5+nTp06y83z6ef6Mh1JUiqVsvPOO2fnnXfOGWeckRtuuCF9+/bNueeeW9lx9913Z9ttt13uuFq1ai33/rPX8G299dbZa6+9cuONN2bXXXfN8OHD88Mf/vBzP8+qfJmO/7TZZpulWrVqmTNnznLb33rrLdfvAQAAABuEL7qvMfnk94999903d999d376059mu+22W2FM06ZN07Rp05xwwgk599xz07x584wYMSI/+MEPsmzZsvzqV79Kz549Vziudu3ala9XdY/mjTfemHPOOSc33nhjunXrls0222yNPsvqdnzWVltttdLfd6pXr55NN930c88JAAAAAAAAAAAAAAAAAAAAsCHw7PEV595oo43yr3/9K4sWLUqS/P73v8/uu++eUqmUJJk1a1bKy8vz0UcfJUmqV6++ys+fJHXr1k2rVq0q32+yySapU6dO6tWrl/r166dBgwZ54YUXlmuoUaNGFixYsML3UlFRsdz5Pvsdrmw92VWtDbuyz/1ZK/v/83nrySbWGwEA+LJKqztwypQp2WeffSrf33TTTdlll11yzTXX5Mwzz8zvf//73HzzzeskEgAAAAAAAAAAAAAAADZUZWVl6dq1a371q19l8uTJqVmzZsaPH59tt902s2bNSrNmzZb706RJky81f8OGDXPSSSdl1KhROeuss3LNNdckSVq1apXHHntsuRu6H3vssdSvXz/bbrvtlzpHzZo107Rp08qbzNu3b5+pU6emcePGK/Sv6gb8T3Xp0iUNGzbMiBEjMmzYsPTu3Ts1a9Zc6dgdd9wxy5Yty0MPPbTS/Wva0blz5zz77LP517/+Vblt7NixqVWrVjp06PBFXwcAAAAAAAAAAABroGnTpqlRo0aeeOKJym3z58/P888/nyRp165dli5dmrfeemuFa8K22mqrJJ9cz7Z06dLl5m3btm1atWqVQYMGLfdAlk+99957ST65rm7KlCnLPXBl/PjxKZVKad68+Wp/jpU1rEyrVq2yZMmSPP7445Xb/v3vf2fmzJlp2bLlap/v04fKLFiwIK1atUqtWrXyyiuvrPAdNWzY8Avn6tOnT0aMGJF//OMfefHFF3PEEUescuxOO+2U+++/f5VNa9JRs2bNdOjQIePGjVtu+7hx49KlS5cv7AcAAABYU//85z9XeL/99tuv8BDknXbaKa+99lpmzpy5yrlKpVKuv/76dOjQIXvvvXfeeOONzz1348aNU7du3eXu0ZwxY8YKv6s0a9as8uHEq3LUUUflmWeeycSJE3PrrbemT58+qxy70047ZcqUKXn33XdXun9NOzp37rzC7ztjx45Nx44dV3hwMQAAAAAAAAAAAAAAAAAAAMCGyrPHl1erVq3UqFEjW221VWrWrJn3338/zZs3rzy+UaNG2WabbZY75oMPPljpXNtvv30mTpyYWrVqpXbt2qldu3YmTJiQsrKyVKtWLaVSKd27d8/o0aOXW7ujXr16WbhwYebOnZslS5ZUru86derUyv5P13dt2rTpl/qeVmc92fLy8myzzTZ59NFHl9v+2GOPfan1ZK03AgDwxT7/b0H/Ye7cudlyyy0r3z/00EM54IADKt/vvPPOefXVV9duHQAAAAAAAAAAAAAAAGzAHn/88QwcODATJkzIK6+8klGjRuXtt99Oy5Ytc/755+fXv/51rrjiisycOTPPPPNMrrvuulx22WWrPf/pp5+eMWPGZPbs2Zk0aVL+/ve/V95wfcopp+TVV1/Naaedlueeey633357fvnLX+bMM8/83JuW77rrrhx99NG56667MnPmzMyYMSOXXnpp7rnnnhxyyCFJklNPPTXvvvtujjzyyDzxxBOZNWtWxo4dm+OOO+4LbxgvKyvLUUcdlauvvjrjxo3L0UcfvcqxjRs3zjHHHJPjjjsuo0ePzuzZs/Pggw/m5ptv/kod+++/f1q1apW+fftm8uTJuf/++3P22Wenf//+KS8v/9x+AAAAAAAAAAAA1kz9+vVzzDHH5Kc//WkeeOCBTJ06Nccdd1xKpVLKysrSvHnz9OnTJ/369cuoUaMye/bsPPnkk7nkkktyzz33JPnkurIPPvgg999/f9555518+OGHKSsry3XXXZeZM2dm9913zz333JNZs2bl6aefzsUXX1x57VufPn1Su3btHHPMMXn22WfzwAMP5LTTTkvfvn2XW1/7izRu3DgPP/xwXn/99bzzzjurHLf99tvnkEMOSf/+/fPoo4/mqaeeytFHH51tt922sumzDjvssPzud7/L448/npdffjkPPvhgTj311DRv3jwtWrRI/fr1c/bZZ+eMM87IkCFD8uKLL2by5Mn54x//mCFDhnxhe8+ePTN//vycfPLJ2WuvvT73ATz/8z//kyeffDKnnHJKnn766Tz33HO56qqr8s4773yljjPPPDPXXnttBg8enOnTp+eMM87IK6+8kpNOOukL+wEAAADW1KuvvpozzzwzM2bMyPDhw/OHP/whP/nJT1YYt8cee2T33XdPr169Mm7cuMyePTt/+9vfcu+99y43rlq1ahk2bFjatGmTvffeO3PmzEmSnH/++fnZz36WBx98MLNnz87kyZNz3HHHZfHixdlvv/2SJOedd16GDh2a888/P1OnTs306dMzYsSI/OIXv/jCz9GkSZN06dIlxx9/fJYsWbLK35mS5Mgjj8xWW22VQw89NOPHj8+sWbMycuTI/OMf//hKHSeddFJefvnlnHnmmZk+fXoGDx6cv/zlLzn77LO/sB8AAACAZNGiRTn//PNz/vnnZ9GiRUXnAAAAAAAAAAAAAADAN5Jnj6+orKwsG2+8cRYuXJijjz46F1100XLrjg4bNiy33npr5fhNNtkkL730UubOnVt5j8R7772XJDnjjDNy22235ZJLLsmUKVNy7rnnZurUqVm0aFEqKioqx2y99dbZZZddMnTo0EybNi1vvvlm/va3v6Vdu3Z56623suWWW2avvfbKb37zm/zjH//IlClTctRRR2WbbbapXMtjdTRu3DhPP/10ZsyYkXfeeSeLFy9e5dif/vSnueSSSzJixIjMmDEj55xzTqZMmbLStUoS640AAKypVf/N9zO23HLLzJ49O8knN+pOmjQpnTt3rtz//vvvp0aNGmu/EAAAAAAAAAAAAAAAADZQ5eXlefjhh/O9730vzZs3zy9+8YsMGjQo3bt3zwknnJBrr702f/3rX7Pjjjtmjz32yF//+tc0adJktedfunRpTj311LRs2TIHHHBAdthhh/zpT39Kkmy77ba555578sQTT6RNmzY56aSTcvzxx3/hTcutWrVK3bp1c9ZZZ6Vt27bZddddc/PNN+faa69N3759kyTbbLNNxo8fn6VLl6Zbt275zne+k5/85Cdp0KDB596M/6k+ffpk2rRp2XbbbdO1a9fPHXvVVVflsMMOyymnnJIWLVqkf//+WbBgwVfqqFatWu6+++7Url07Xbt2zeGHH55DDz00l1566Re2AwAAAAAAAAAAsOYuu+yydO7cOQcddFD23XffdO3aNS1btkzt2rWTJNddd1369euXs846KzvssEMOPvjgPP7442nYsGGSpEuXLjnppJPy/e9/P5tvvnl++9vfJkk6deqUCRMmpGnTpunfv39atmyZgw8+OFOnTs3ll1+eJKlbt27GjBmTd999NzvvvHMOO+yw7LPPPrnyyiu/1Ge44IIL8tJLL6Vp06bZfPPNP3fsddddlw4dOuSggw5K586dU1FRkXvuuWeV63V369Ytd955Z3r06JHmzZvnmGOOSYsWLTJ27NhUr149SXLhhRfmvPPOy69//eu0bNmy8pjVuf6wvLw8PXr0yFNPPZU+ffp87tjmzZtn7Nixeeqpp9KpU6d07tw5t99++1fu+P73v5/LL788F1xwQdq2bZuHH34499xzTxo1avSF/QAAAABrql+/flm4cGE6deqUU089NaeddlpOPPHElY4dOXJkdt555xx55JFp1apVfvazn630YcPVq1fP8OHD07p16+y999556623sscee2TWrFnp169fWrRoke7du2fOnDkZO3ZsdthhhySf/AZ01113Zdy4cdl5552z66675rLLLlvt30f69OmTp556Kj179kydOnVWOa5mzZoZO3Zstthii3zve9/LjjvumN/85jepVq3aV+po0qRJ7rnnnjz44INp27ZtLrzwwvz+979Pr169VqsfAAAAAAAAAAAAAAAAAAAAoGiePb5yDRo0yEcffZQf//jHK6w7+sADD1SuEZskDRs2zLe+9a288soreeGFF5Iky5YtS/LJ+hjnnntufvvb36Zr1655+umnc9hhh6WsrGy5c40ePTpHH310LrroorRr1y677757HnzwwfzsZz/Lv/71r8yaNStXXHFFdtlllxx00EHp0qVLKioqcvvtt69yfdeV6d+/f3bYYYd07Ngxm2++ecaPH7/KsT/+8Y9z1lln5ayzzsqOO+6Ye++9N3fccUe23377lY633ggAwJopq6ioqFidgT/84Q/zzDPP5JJLLsno0aMzZMiQvPHGG6lZs2aSZNiwYbn88svz5JNPrtNgAADYUMyfPz8NGjTIvHnzUl5eXnQOAAAAAAAAAAAAwDfSnnvumbZt2+byyy9fo+OPPfbYvPfeexk9evRa7QIAAAAAAAAAACBZsGBBtt122wwaNCjHH3980TmsRQ8++GD22muvzJ07NxtvvPGXPv6ll15KkyZNMnny5LRt23at9wEAAADfHF/1PsNvsrKystx222059NBD1+j4xo0b5/TTT8/pp5++VrsAAAAAqrJFixZl4MCBSZIBAwakZs2aBRcBAAAAAAAAAAAAAACsfzNmzEidOnXyX//1X6t9TEVFRRYvXpwkef3117N06dI0a9ZsXSV+I1lvBAD4qubPn58GDRpk3rx5KS8vX+W40upOeNFFF6VatWrZY489cs011+Saa65Z7gbdwYMHZ//99/9q1QAAAAAAAAAAAAAAAABf0p/+9KfUq1cvzzzzzGof88gjj6RevXoZNmzYOiwDAAAAAAAAAAD4Zpk8eXKGDx+eF198MZMmTUqfPn2SJIccckjBZawr2223XY488sgvdUz37t3TunXrdVQEAAAAwJdx5JFHZrvttvtSxwwcODD16tXLK6+8so6qAAAAAAAAAAAAAAAAAAAAAKjq3n777UyaNCkffvjhah+zYMGCPPvss3n33XfXYdk3m/VGAID1ofrqDtx8883zyCOPZN68ealXr16qVau23P5bbrkl9erVW+uBAAAAAAAAAAAAAAAAAKsybNiwLFy4MEnyX//1X6t9XMeOHTNlypQkcV8UAAAAAAAAAADAWnTppZdmxowZqVmzZjp06JBHHnkkm222WdFZrGW77LJLnn/++SRf/jq8a6+9do2u/QMAAABg7fr0953PPpPui5x00kk5/PDDk3zyfDsAAAAAAAAAAAAAAAAAAAAA+E9NmjRJRUVFkqRGjRqrfdxGG22UHXbYIdWrV0+pVFpXed9Y1hsBANaXsopP/zYIAAB8KfPnz0+DBg0yb968lJeXF50DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRk0aJFGThwYJJkwIABqVmzZsFFAAAAAAAAAAAAAAAAVUNFRUWWLVuWJCmVSikrKyu4CACAz5o/f34aNGiQefPmpby8fJXjSuuxCQAAAAAAAAAAAAAAAKhCKioqctNNN+W9994rOgUAAAAAAAAAAACqpA8//DA33HBDli5dWnQKAAAAABuYp556Ko8++mjRGQAAAAAAAAAAAAAAAAAAAABUMY899ljmz59fdMZatXjx4gwfPjzDhw/P4sWLi84BAOArKBUdAAAAAAAAAAAAAAAAAGyYJk2alCOPPDJ//OMfi04BAAAAAAAAAACAKumyyy5L3759c++99xadAgAAAMAG5thjj03Pnj09HBgAAAAAAAAAAAAAAAAAAACA1fbmm2+ma9euOeaYY4pOWeteeOGFvPDCC0VnAADwFZWKDgAAAAAAAAAAAAAAAAA2TKNHj06SjBw5stgQAAAAAAAAAAAAqKIefvjhJP//mjwAAAAASJKnn346U6ZMydtvv50xY8YUnQMAAAAAAAAAAAAAAAAAAABAFXH33Xcn+WTd04qKioJrAABgRaWiAwAAAAAAAAAAAAAAAIAN02233ZatttoqkydPzosvvlh0DgAAAAAAAAAAAFQp7777bh544IHUr18/o0ePzpIlS4pOAgAAAGADMXTo0Gy22Wb5zne+kyFDhhSdAwAAAAAAAAAAAAAAAAAAAEAVcfvttyf5ZO3T6dOnF1wDAAArKhUdAAAAAAAAAAAAAAAAAGx4pk2blqlTp2bQoEGpU6dORo4cWXQSAAAAAAAAAAAAVCl33HFHli5dmmHDhuWdd97Jww8/XHQSAAAAABuAJUuWZNiwYTnqqKPygx/8IHfccUfmzp1bdBYAAAAAAAAAAAAAAAAAAAAAG7j58+dnzJgxufjii1O/fn3PHl/LfvWrX2XYsGFFZwAAVHmlogMAAAAAAAAAAAAAAACADc+IESNSXl6eXr16pXv37m6YBwAAAAAAAAAAgC9p5MiR6dKlSw466KA0atQot956a9FJAAAAAGwAxo0blzlz5qRfv3456qijsnTp0owYMaLoLAAAAAAAAAAAAAAAAAAAAAA2cHfddVc+/vjj9OnTJwceeGBGjRpVdNLXRkVFRc4///wcffTRRacAAFR5paIDAAAAAAAAAAAAAAAAgA1LRUVFRowYkUMPPTS1atVKr1698sQTT+Tll18uOg0AAAAAAAAAAACqhLlz52bs2LE57LDDUlZWll69emXUqFFZunRp0WkAAAAAFGzo0KFp3bp12rdvn6222irdunXL0KFDi84CAAAAAAAAAAAAAAAAAAAAYAN3yy23pFOnTmnUqFF69eqVKVOmZNasWUVnfS3Mnj278vWyZcsKLAEAqPpKRQcAAAAAAAAAAAAAAAAAG5YJEyZkxowZOeKII5IkBx10UOrWrZvrr7++4DIAAAAAAAAAAACoGoYNG5Zly5blyCOPTJIcfvjhefPNN3PfffcVXAYAAABAkebNm5fRo0enX79+KSsrS5L069cv//jHP/L8888XXAcAAAAAAAAAAAAAAAAAAADAhur999/P3/72t/Tu3TtJcsABB6R27doZOXJkwWVfDxMnTqx8/eKLLxZYAgBQ9ZWKDgAAAAAAAAAAAAAAAAA2LFdffXX+67/+K/vvv3+SpLy8PEceeWT+/Oc/Z+nSpQXXAQAAAAAAAAAAwIatoqIi1157bXr06JEtt9wySdKpU6fstNNOueqqqwquAwAAAKBIt9xySxYtWpSjjz66ctvBBx+cBg0aZOjQoQWWAQAAAAAAAAAAAAAAAAAAALAhGz58eBYvXpzvf//7SZJ69erlkEMOyXXXXZeKioqC66q+CRMmpG7dupWvAQBYc6WiAwAAAAAAAAAAAAAAAIANx7///e8MHz48J554YqpVq1a5/eSTT86rr76au+66q8A6AAAAAAAAAAAA2PA98sgjeeqpp9K/f//KbWVlZTn55JNz55135uWXXy6wDgAAAIAiDR06NPvuu2+22Wabym116tTJ4Ycfnuuvvz7Lli0rsA4AAAAAAAAAAAAAAAAAAACADdU111yTAw44IA0bNqzcduKJJ2b69Ol59NFHCyz7epg4cWL222+/fPvb386ECROKzgEAqNJKRQcAAAAAAAAAAAAAAAAAG47//d//TalUyoknnrjc9g4dOmS33XbLBRdckGXLlhVUBwAAAAAAAAAAABu+Cy+8MDvttFMOOOCA5bYfffTR2WSTTXLRRRcVVAYAAABAkWbMmJFHHnkkxxxzzAr7jjnmmLz88su5//77CygDAAAAAAAAAAAAAAAAAAAAYEM2YcKETJgwIf37919u+5577plmzZrl6quvLqjs66GioiKTJk1Khw4d0rFjx0yYMKHoJACAKq1UdAAAAAAAAAAAAAAAAACwYZg9e3b+8Ic/5Mc//nE233zzFfYPHDgwkyZNyvDhwwuoAwAAAAAAAAAAgA3fXXfdlfvuuy/nnXdeysrKlttXr169DBgwINddd12effbZggoBAAAAKMI777yTQw89NI0bN86hhx66wv4uXbpkl112Sd++fTNr1qz1HwgAAAAAAAAAAAAAAAAAAADABuviiy/O9ttvn4MOOmi57aVSKT/60Y8yYsSIvPDCCwXVVX2zZ8/O3Llz07Fjx3Ts2DGTJk3K0qVLi84CAKiySkUHAAAAAAAAAAAAAAAAAMVbvHhxjjvuuGy22WY555xzVjrmu9/9bg4//PCcdtppefXVV9dzIQAAAAAAAAAAAGzY3nzzzZx88snp1q1bevbsudIxJ598cnbYYYf07ds3H3300XouBAAAAKAIH3zwQQ488MD8+9//ztixY1O3bt0VxpSVleWOO+5IeXl59t9//8yZM6eAUgAAAAAAAAAAAAAAAAAAAAA2NJMnT87o0aMzYMCAVK9efYX9J554YrbYYotceOGFBdR9PUyYMCFJ0qFDh3Ts2DEffPBBZs6cWXAVAEDVVSo6AAAAAAAAAAAAAAAAACjWxx9/nGOPPTbjx4/PkCFDUl5evsqxV111VerXr5/9998/r7/++nqsBAAAAAAAAAAAgA3XW2+9lYMOOihLlizJNddck7KyspWOq127dm644YbMmDEjvXr1yoIFC9ZzKQAAAADr06JFi9KrV69Mnz499957b7bffvtVjt1iiy0yduzYfPjhh+nevXvmzZu3HksBAAAAAAAAAAAAAAAAAAAA2NAsWbIk/fv3T+vWrdOnT5+VjqlTp07OPffcXH/99Xn88cfXc+HXw8SJE7Pddttliy22SPv27ZMkTz75ZMFVAABVV6noAAAAAAAAAAAAAAAAAKAYS5cuzZgxY7Lrrrvm1ltvzQ033JA999zzc4/ZZJNNct999+WDDz7ITjvtlKuvvjoLFy5cP8EAAAAAAAAAAACwgVmwYEGuvfbatGnTJq+++mruueeeNGzY8HOPadeuXW6//fY8+OCDad++fW699dYsXrx4PRUDAAAAsD589NFHue+++9KrV688+OCDGT16dOWDeD9P48aNM2bMmLz00kv53ve+lzvvvDMffPDBeigGAAAAAAAAAAAAAAAAAAAAYEMzaNCgTJ48OYMHD06NGjVWOe6HP/xh2rVrlxNPPNE6p2tg4sSJ6dixY5KkQYMG2X777TNx4sSCqwAAqq7qRQcAAAAAAAAAAAAAAAAA697HH3+cmTNnZtq0aZk6dWqmTp2a8ePH580338wuu+yS8ePHV97I/UW23377TJ48OaeffnpOPfXUnHnmmdl9993Ttm3btGrVKq1bt07Lli1Tt27ddfypAAAAAAAAAAAAYN2qqKjIm2++mZdeeikvv/zyCv+dNWtWPvroo/Tu3TuXXXZZtttuu9Wad7/99svEiRNz6qmnpnfv3ikvL0+XLl3SsmXLNGvWLI0bN06jRo3SqFGj1KtXbx1/yg3PRx99lHnz5uW9997LvHnzsmTJklRUVGTZsmWpqKhY7vV/bquoqCg6HQAAgCpsdf5dubr/9qzKcxVxzqo+15IlSzJv3rzK3zOeeuqpPPTQQ1m4cGG23nrrjBgxInvvvfdqzZUkO+64Y+6+++7069cvBx98cGrUqJGuXbumY8eO+da3vpWNN944DRo0SI0aNVIqlVJWVpaysrIvfA0AAADr0ur+23N1xq3NuYo4p7k+USqVUl5eXvlbRp06dfxGAQAAAAAAAAAAAAAA8CU899xz+eUvf5mzzjornTp1+tyx1atXz5///Od06tQpgwYNyjnnnLOeKqu+ioqKTJw4MWeddVbltg4dOmTixIkFVgEAVG1lFVaNBwCANTJ//vw0aNAg8+bNS3l5edE5AAAAAAAAAAAAACuYMmVKhg4dmrFjx+a5557L0qVLkyRbbbVVWrdunfbt2+e///u/s+uuu67xAwxnzZqVUaNG5e9//3umTp2aV155JcknD1Js0qRJunTpksMPPzwHHnhgSqXSWvtsAAAAAAAAAAAAsK7MmDEjN9xwQ+67775MmzYt8+fPr9zXoEGDNG7cOI0aNUrjxo3z7W9/OwcffHCaNGmyxud76qmncscdd+SJJ57Ic889l5deeilLliyp3L/ppptWnq9jx47p27dvtttuu6/0GTc0//73v3PfffdlzJgxGTt2bF5//fWikwAAAAC+lGrVqmXjjTdOgwYN8u1vfzvdunVLt27d8p3vfGeN7+GsqKjICy+8kDFjxmTMmDF57rnnMm/evLz33ntZvHjxWv4EAAAAAOvWZpttln333TfdunXL/vvvn2222abopHVi0aJFGThwYJJkwIABqVmzZsFFAAAAAAAAAAAAAABAVbR06dLsvvvuefvtt/PUU0+lTp06q3Xcz3/+81xxxRWZPHlyWrZsuY4r166i7st48cUX06xZs9xzzz3p3r17kmTQoEE577zzMn/+/FSrVm29dAAAVAXz589PgwYNMm/evJSXl69yXFlFRUXFeuwCAICvjdX9SzcAAAAAAAAAAADA+vbOO+/klFNOyS233JKtt9463/ve99KpU6e0atUqLVu2zKabbrrOzv3+++9n2rRpmTZtWp599tmMGTMmU6dOTZs2bXLdddelXbt26+zcAAAAAAAAAAAA8FXMnz8/p59+ev76179m4403Trdu3dK2bdvssMMOadKkSRo1apSNN954nXcsXbo0b7zxRl5++eW89NJLlf996aWXMn78+CxZsiRnnnlmLrjggvX20Jh16YorrsiZZ56ZZcuWpXXr1unWrVvatGmTjTfeOBtvvHHKy8tTo0aNlEqllJWVpaysrPL1yrYBAADAV7E6/7bckMZsSC3f5DGlUil169Zdb79NVFRU5KOPPsrixYtTUVGRZcuWpaKiYpWvly1btl66AAAA+HpanUegr+5j0tf3XEWc01z/39KlSzN//vy89957mTdvXqZNm5axY8dm4sSJqaioyJlnnplLL730a3e9x6JFizJw4MAkyYABA74W1/cAAAAAAAAAAAAAAADr35VXXpnTTjstDz/8cL773e+u9nELFy5MmzZtstlmm+WRRx5JtWrV1mHl2lXUfRk333xzvv/97+fNN9/MFltskSR58MEHs9dee+XZZ59N69at10sHAEBVMH/+/DRo0CDz5s1LeXn5KsdVX49NAAAAAAAAAAAAAAAAwDr2+uuvZ88998y7776bIUOG5Kijjkr16uvvNqL69etnl112yS677JIkGTRoUB577LH86Ec/SpcuXTJ69Oh069ZtvfUAAAAAAAAAAADA6vj3v/+dvfbaKy+99FKuvPLKHH/88alVq1YhLdWqVUvDhg3TsGHD7Lbbbsvtmz9/fi6//PJcdNFFmTBhQu66667Url27kM61YejQoTn99NNz2mmn5Wc/+1m22267opMAAAAANnhlZWWpU6dO6tSpU3QKAAAAwJdy8cUX5+233861116bAQMGZJNNNsm5555bdBYAAAAAAAAAAAAAAMAG5fXXX8+AAQPywx/+MN/97ne/1LF16tTJ4MGDs/vuu+cPf/hDTj/99HUT+TUyceLENGzYMFtssUXltnbt2lXua926dVFpAABVVqnoAAAAAAAAAAAAAAAAAGDt+Pjjj3PQQQfl448/zoQJE9KvX79Ur1696Kx06dIl48ePzz777JNevXpl2rRpRScBAAAAAAAAAABApSVLluTQQw/NnDlz8s9//jOnnHJKatWqVXTWSpWXl+e8887L2LFjM378+JxwwgmpqKgoOmuN3H333TnuuONy/PHH54orrsh2221XdBIAAAAAAAAAAOvY5ptvnv/5n//JBRdckF/84hf585//XHQSAAAAAAAAAAAAAADABuXnP/956tatm9/85jdrdPxuu+2WH/3oRxkwYEBefvnltVz39TNhwoR06NBhuW0NGjTI9ttvnwkTJhRUBQBQtZWKDgAAAAAAAAAAAAAAAADWjvPPPz9Tp07NHXfckSZNmhSds5w6depkxIgRadiwYY499tgsXbq06CQAAAAAAAAAAABIkgwaNCiPPfZYRo0alVatWhWds1r23HPPDB48OMOGDcttt91WdM6XNn78+PTu3Ts9evTI1VdfnbKysqKTAAAAAAAAAABYj37xi1/kRz/6UU4++eSMHDmy6BwAAAAAAAAAAAAAAIANwvTp03PjjTfml7/8ZTbeeOM1nmfgwIHZaKON8pvf/GbtxX0NLVu2LBMnTszOO++8wr6OHTtm4sSJBVQBAFR9paIDAAAAAAAAAAAAAAAAgK/ulVdeyWWXXZYBAwakbdu2Rees1EYbbZTBgwfnySefzLBhw4rOAQAAAAAAAAAAgLzzzju5+OKL8+Mf/zi77bZb0TlfyhFHHJGDDz44p59+ej7++OOic1bbvHnz0qNHj3Tq1CnDhw9P9erVi04CAAAAAAAAAGA9KysryxVXXJHDDz88Rx11VF544YWikwAAAAAAAAAAAAAAAAp38cUXZ7vttstxxx33leapV69ezjrrrAwePDivvfbaWqr7+nnxxRczb968dOzYcYV9HTp0yJQpU7JkyZICygAAqrZS0QEAAAAAAAAAAAAAAADAV3fRRRelQYMGOfvss4tO+VydO3fOoYceml/96lduEAcAAAAAAAAAAKBwv/3tb5Mk5557bsElX15ZWVl+85vf5LXXXsuQIUOKzlltN998c+bNm5dhw4aldu3aRecAAAAAAAAAAFCQUqmUwYMHp06dOvnrX/9adA4AAAAAAAAAAAAAAECh3nrrrdx8880544wzUqtWra8836mnnppatWrlz3/+81qo+3qaMGFCkqRDhw4r7OvQoUM+/PDDPPfcc+s7CwCgyisVHQAAAAAAAAAAAAAAAAB8NXPnzs0NN9yQn/zkJ6lXr17ROV/o//yf/5NZs2bl7rvvLjoFAAAAAAAAAACAb7APP/ww11xzTU4++eRsttlmReeskZYtW6ZXr14ZNGhQKioqis5ZLUOHDs1+++2XbbfdtugUAAAAAAAAAAAKVqdOnXz/+9/P9ddfn2XLlhWdAwAAAAAAAAAAAAAAUJghQ4akVCrlmGOOWSvz1a9fP0cddVQGDx6cJUuWrJU5v24mTJiQJk2aZNNNN11hX/v27ZMkEydOXN9ZAABVXqnoAAAAAAAAAAAAAAAAAOCrGTJkSBYvXpwTTjih6JTV0r59+3Tq1ClXXXVV0SkAAAAAAAAAAAB8g910002ZN29efvjDHxad8pWccsopmTlzZh599NGiU77Qiy++mEcffXStPfQHAAAAAAAAAICq75hjjskrr7yShx56qOgUAAAAAAAAAAAAAACAQlRUVOSaa65J7969s8kmm6y1efv375/XX389995771qb8+tkwoQJ6dix40r3lZeXp3nz5pk4ceJ6rgIAqPpKRQcAAAAAAAAAAAAAAAAAX80111yTnj17Zssttyw6ZbWddNJJGTNmTF577bWiUwAAAAAAAAAAAPiG+stf/pL9998/3/72t4tO+Ur22GOPNG3aNNdee23RKV/o+uuvT/369XPIIYcUnQIAAAAAAAAAwAaic+fOadasWYYOHVp0CgAAAAAAAAAAAAAAQCGmTJmS559/Pv369Vur83bo0CGtW7fOTTfdtFbn/TpYunRpJk2alI4dO65yTIcOHTJhwoT1WAUA8PVQKjoAAAAAAAAAAAAAAAAAWHPTpk3LtGnTcvTRRxed8qX07NkzNWvWzC233FJ0CgAAAAAAAAAAAN9Ar7/+eh577LH06dOn6JSvrFQq5dhjj83IkSOzcOHConNWadmyZRk6dGgOP/zw1K1bt+gcAAAAAAAAAAA2EGVlZenXr19uvfXWLFiwoOgcAAAAAAAAAAAAAACA9W7UqFH51re+lT333HOtz927d+/ccccd+eijj9b63FXZjBkz8sEHH6Rjx46rHNOxY8dMmTIlS5YsWY9lAABVX6noAAAAAAAAAAAAAAAAAGDNjRw5MvXr189+++1XdMqX0qBBg3Tv3j033XRT0SkAAAAAAAAAAAB8A40aNSo1atRIjx49ik5ZKw4//PAsWLAgY8aMKTpllcaPH5/Zs2enX79+RacAAAAAAAAAALCB6du3bz744IPcdtttRacAAAAAAAAAAAAAAACsdyNHjszBBx+cGjVqrPW5e/funffffz/jxo1b63NXZRMmTEiStG/ffpVjOnTokIULF+a5555bX1kAAF8LpaIDAAAAAAAAAAAAAAAAgDV36623pkePHqldu3bRKV/aEUcckSeeeCKzZ88uOgUAAAAAAAAAAIBvmFtvvTX77rtvNt5446JT1ormzZvnO9/5TkaOHFl0yioNHTo0TZo0yW677VZ0CgAAAAAAAAAAG5jGjRtnjz32yNChQ4tOAQAAAAAAAAAAAAAAWK+mT5+e6dOnp1evXutk/latWqVVq1a55ZZb1sn8VdVmm22W44477nPXp23Xrl169uyZZcuWrb8wAICvgVLRAQAAAAAAAAAAAAAAAMCamTlzZp5++ul1dgP8unbQQQelVq1aue2224pOAQAAAAAAAAAA4Btkzpw5eeSRR3LYYYcVnbJW9erVK3fccUc+/vjjolNWsHDhwtx8883p27dvSiXLowMAAAAAAAAAsKJ+/frlvvvuy2uvvVZ0CgAAAAAAAAAAAAAAwHozatSobLTRRtlvv/3W2Tl69eqVO++8M4sXL15n56hqvve97+Uvf/nL544pLy/PyJEjs9NOO62nKgCArwer0QMAAAAAAAAAAAAAAEAVNXLkyNStWzcHHHBA0SlrpF69etlvv/0yevToolMAAAAAAAAAAAD4Bhk9enRKpVIOOeSQolPWqsMOOyzz58/P/fffX3TKCm6//fbMnz8/ffv2LToFAAAAAAAAAIAN1GGHHZbatWtn2LBhRacAAAAAAAAAAAAAAACsN6NGjcqBBx6Y2rVrr7NzHHLIIXnvvffy6KOPrrNzAADAp0pFBwAAAAAAAAAAAAAAAABrZuTIkTnwwANTt27dolPW2KGHHprx48fnrbfeKjoFAAAAAAAAAACAb4hbb701e++9dzbddNOiU9aq1q1bp1mzZhk9enTRKSsYMmRIunbtmmbNmhWdAgAAAAAAAADABqq8vDz//d//nSFDhqSioqLoHAAAAAAAAAAAAAAAgHXupZdeyqRJk9KzZ891ep727dtn2223zR133LFOzwMAAElSvegAAAAAAAAAAAAAAAAAYM1ceOGF2XTTTYvO+EoOPvjgVKtWLXXr1i06BQAAAAAAAAAAgG+IAQMGpHr1r98S3WVlZfnd736XLbbYouiUFZxzzjmpqKgoOgMAAAAAAAAAgA3cWWedlTfeeCMVFRUpKysrOgcAAAAAAAAAAAAAAGCd2nbbbTNu3Ljsuuuu6/Q8ZWVlGT58eJo2bbpOzwMAAEny9XsSAAAAAAAAAAAAAAAAAHxDdO/eveiEr2zzzTfPscceW3QGAAAAAAAAAAAA3yB777130QnrzEEHHVR0wkrtscceRScAAAAAAAAAAFAFtG/fPu3bty86AwAAAAAAAAAAAAAAYL2oUaNG9t133/Vyru9+97vr5TwAAFAqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqqtUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVVep6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq5S0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVF2logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqLpKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUHWVig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOqqXnQAAAAAAAAAAAAAAAAA8OUtWrQoAwcOTJIMGDAgNWvWLLjoy/s6fAYAAAAAAAAAAACqlq/ztWsb6mfbULsAAAAAAAAAANiwuM4EAAAAAAAAAAAAAAD4pllf91O4b2N5q/t9+N4AANZMqegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKquUtEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRdpaIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi6SkUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB1lYoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqKhUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDVVSo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICqq1R0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVV6noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqrlLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUXaWiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoukpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQdZWKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6ioVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA1VUqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqqtUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVVep6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq5S0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVF2logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqLpKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUHWVig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOoqFR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNVVKjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKqrVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFVXqegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKquUtEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRdpaIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi6SkUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB1lYoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqKhUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDVVSo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICqq1R0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVV6noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqrlLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUXaWiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoukpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQdZWKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6ioVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA1VUqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqqtUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVVep6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq5S0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVF2logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqLpKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUHWVig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOoqFR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNVVKjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKqrVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFVXqegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKquUtEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRdpaIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi6SkUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB1lYoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqKhUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDVVSo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICqq1R0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVV6noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqrlLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUXaWiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoukpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQdZWKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6ioVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA1VUqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqqtUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVVep6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq5S0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVF2logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqLpKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD/2LvzKL/Hu2/g798vs5BNxDZCmoggUUIIaYkQQWjvOyG2kgpyU9QeIXfEkqiiSEkoraUpPbZSUkWJIhWxi1Rrue170miQkG0mmXn+6P3M8+QkdIZJZiZer3Pm+F3X9flc1/v6xh9znN9XAAAAAAAAAAAAAACar2JjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+So2dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq9iYwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPkqNnYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqvYmMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD5KjZ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACar2JjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+So2dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq9iYwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPkqNnYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqvYmMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD5KjZ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACar2JjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+So2dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq9iYwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPkqNnYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqvYmMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD5KjZ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACar2JjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+So2dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq9iYwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPkqNnYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqvYmMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD5KjZ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACar2JjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+So2dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq9iYwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPkqNnYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqvYmMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD5KjZ2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACar2JjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+So2dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq9iYwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPkqNnYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqvYmMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD5KjZ2AAAAVq0xY8Zk2223rXN9oVDIpEmTVloeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5KzZ2AAAAGt4RRxyRQqGQQqGQ0tLSdOnSJSNGjMj8+fMzYsSIPPTQQw121ptvvplDDjkkHTp0yBprrJGNN944gwYNyquvvtpgZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATVdJYwcAAGDl2HvvvTNx4sRUVVVl6tSpOeqoozJ//vxcffXVad26dYOcUVlZmT333DPdunXLnXfemQ033DDvv/9+7rvvvsydO7dBzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmraSxg4AAMDKUV5enoqKiiTJoYcemkceeSSTJk3KBhtskEmTJmXGjBm1tb/+9a8zbty4vP7662nfvn3233//XHnllSvc97zzzssvfvGLPPDAA0mSN998Mw8//HA6deqUJOnUqVN23nnn2vopU6akX79++eSTT9KuXbskyYwZM9KzZ8+89dZb6dy5c5Jk2rRpOfPMM/PMM8+kvLw8O+64Y2699dasvfbaqa6uziWXXJJrr7027733XjbYYIMcc8wxGT16dJLkgw8+yPDhwzN58uQUi8X06dMn48ePr917ypQpOeOMM/Liiy+mtLQ03/72t3PzzTenU6dO+etf/5pTTjklzz77bAqFQjbbbLP86le/Sq9evRrqjwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVn/V1cmCOV+tt7Iypan61+fPP0rKyhou16qyOtwBAAAAAAAAAAAAAABYdVbVuwjN4Z2HVZmxrmc1h+cGALAqff5ZncpKVnIMAACaiDXXXDNVVVXLzV999dUZPnx4Lrroouyzzz6ZO3dupk2btlxdTU1NTjnllEyaNCmPPfZYNttss3zwwQcpFou54447csopp6RFixZfKduMGTPSv3//DBs2LBMmTEhJSUkeeeSRLF26NEkyatSoXHvttbnsssvSp0+fzJw5M6+88kqSZMGCBenXr1922WWXPProoykpKcn555+fvffeOy+88EKKxWL23XffHH300bnllltSWVmZp59+OoVCIUkyZMiQ9OzZM1dffXVatGiRGTNmpLS0dIU5Fy9enMWLF9eO582b95XuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrlerq5KKOSeXnX6m9LMno/zuYcGVDpVqlVoc7AAAAAAAAAAAAAAAAq86qehehObzzsCoz1vWs5vDcAABWqcU1dSorWckxAABoAp5++uncfPPN6d+//3Jr559/fk477bScfPLJtXM77LDDMjVLlizJ0KFD8+yzz2batGnZeOONkyQbbbRRJkyYkDPOOCNjx45Nr1690q9fvwwZMiRdunSpc76LL744vXr1ylVXXVU79+1vfztJ8tlnn2X8+PG58sorc/jhhydJNt100/Tp0ydJcuutt6ZYLOa6665LoVBIkkycODHt2rXLlClT0qtXr8ydOzf/8R//kU033TRJ0r1799pz3n333Zx++unp1q1bkmSzzTb7wpwXXnhhxo4dW+d7AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA3woI5SeXnjZ0CAAAAAAAAAAAAAAAAAABoRCWNHQAAgJXjnnvuSevWrbNkyZJUVVVl0KBBueKKK3LVVVfV1syePTsffvhh+vfv/6V7nXrqqSkvL8+TTz6Zddddd5m1448/PkOHDs0jjzySp556KrfffnsuuOCC3H333dlzzz3rlHXGjBk58MADV7j28ssvZ/HixV+Y8bnnnsvrr7+eNm3aLDO/aNGivPHGG9lrr71yxBFHZMCAAdlzzz2zxx575KCDDsqGG26YJBk+fHiOOuqo/Pa3v80ee+yRAw88MJtuuukKzxo1alSGDx9eO543b146duxYpzsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDfCcU8lrdapV0tlZWUumfCvv3f19JN+nLKyspWRbKVaHe4AAAAAAAAAAAAAAACsOqvqXYTm8M7DqsxY17Oaw3MDAFil5n2WXLTpvy0rWQVRAABoBP369cvVV1+d0tLSdOjQIaWlpcvVrLnmmnXaa88998wtt9ySBx54IEOGDFluvU2bNhk4cGAGDhyY888/PwMGDMj555+fPffcM8ViMUlSU1NTW19VVVXnHP8uY3V1dbbffvvcdNNNy62tt956SZKJEyfmpJNOyv3335/bbrstZ511Vh588MF85zvfyZgxY3LooYfm3nvvzZ/+9Kece+65ufXWW7Pffvstt195eXnKy8u/NA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfKO1WidpvV79eiorU5X//ftXW6+XlJU1fK6VbXW4AwAAAAAAAAAAAAAAsOqsqncRmsM7D6syY13Pag7PDQBgVaour1NZcSXHAACgkbRq1Spdu3ZNp06dUlpausKaNm3apHPnznnooYe+dK+BAwfm5ptvzlFHHZVbb731S2sLhUK6deuW+fPnJ0nWW+9f/2ObmTNn1tbMmDFjmZ4ePXp8YYbNNtssa6655heub7fddnnttdey/vrrp2vXrsv8rLXWWrV1PXv2zKhRo/L4449nq622ys0331y7tvnmm+fUU0/N5MmTM3jw4EycOPFL7wgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/D/Fxg4AAEDjGjNmTMaNG5cJEybktddey/Tp03PFFVcsV7fffvvlt7/9bY488sjccccdSZIZM2Zk0KBBueOOO/LSSy/l9ddfz/XXX59f//rXGTRoUJKka9eu6dixY8aMGZNXX3019957b8aNG7fM3qNGjcozzzyTH//4x3nhhRfyyiuv5Oqrr84///nPrLHGGhk5cmTOOOOM3HjjjXnjjTfy5JNP5vrrr0+SDBkyJOuuu24GDRqUqVOn5q233spf/vKXnHzyyXn//ffz1ltvZdSoUXniiSfyzjvvZPLkyXn11VfTvXv3LFy4MCeccEKmTJmSd955J9OmTcszzzyT7t27r+SnDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrj5LGDgAAQOM6/PDDs2jRolx22WUZMWJE1l133RxwwAErrD3ggANSXV2dww47LMViMX379k3nzp0zduzYvP322ykUCrXjU089NUlSWlqaW265Jccdd1y22Wab7LDDDjn//PNz4IEH1u67+eabZ/LkyTnzzDOz4447Zs0110zv3r1zyCGHJEnOPvvslJSU5JxzzsmHH36YDTfcMMcee2ySpGXLlnn00UczcuTIDB48OJ999lk22mij9O/fP23bts3ChQvzyiuv5IYbbsicOXOy4YYb5oQTTsgxxxyTJUuWZM6cORk6dGj+8Y9/ZN11183gwYMzduzYlfzUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGD1UdLYAQAAaHi/+c1vvnBtzJgxGTNmzDJzxxxzTI455pgV1tfU1CwzPuigg3LQQQfVjsePH/9v8+y888554YUXvnTfXXfdNdOmTVthf7FYzOjRozN69OgVrldUVOSGG25Y4Vrbtm1z1113rXCtrKwst9xyy7+LDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8iWJjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+SrWt2HhwoVZsGBB7fidd97J5ZdfnsmTJzdoMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACavmJ9GwYNGpQbb7wxSfLpp5+md+/eGTduXAYNGpSrr766wQMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HQV69swffr07LLLLkmSO+64IxtssEHeeeed3HjjjZkwYUKDBwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6SrWt2HBggVp06ZNkmTy5MkZPHhwisVivvOd7+Sdd95p8IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANF3F+jZ07do1kyZNynvvvZcHHngge+21V5Jk9uzZadu2bYMHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDpKta34ZxzzsmIESPSuXPn9O7dO9/97neTJJMnT07Pnj0bPCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATVdJfRsOOOCA9OnTJzNnzsw222xTO9+/f//st99+DRoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKat5Ks0VVRUpKKiYpm5HXfcsUECAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANB8lNSlaPDgwXXe8M477/zKYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoXkrqUrTWWmut7BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEMldSmaOHHiys4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDNUbOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRfJV+l6Y477sjvfve7vPvuu6msrFxmbfr06Q0SDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICmr1jfhgkTJuTII4/M+uuvn+effz477rhj1llnnbz55pvZZ599VkZGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqoYn0brrrqqlxzzTW58sorU1ZWljPOOCMPPvhgTjrppMydO3dlZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgiSrWt+Hdd9/NTjvtlCRZc80189lnnyVJDjvssNxyyy0Nmw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJq1Y34aKiorMmTMnSdKpU6c8+eSTSZK33norNTU1DZsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCatWN+G3XffPX/84x+TJP/1X/+VU089NXvuuWcOPvjg7Lfffg0eEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICmq6S+Dddcc02qq6uTJMcee2zat2+fxx57LP/5n/+ZY489tsEDAgBQN1OmTEm/fv3yySefpF27do0dBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4hijWu6FYTElJSe34oIMOyoQJE3LSSSelrKysQcMBALCsI444IoVCIYVCIaWlpenSpUtGjBiR+fPnN0qe+fPnZ+TIkenSpUvWWGONrLfeetltt91yzz33NEoeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDVK/kqTZ9++mmefvrpzJ49O9XV1cusDR06tEGCAQCwYnvvvXcmTpyYqqqqTJ06NUcddVTmz5+fgw8+eJVnOfbYY/P000/nyiuvzJZbbpk5c+bk8ccfz5w5c1Z5FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgcZTUt+GPf/xjhgwZkvnz56dNmzYpFAq1a4VCIUOHDm3QgAAALKu8vDwVFRVJkkMPPTSPPPJIJk2alIMPPniZujlz5uSEE07I1KlT8/HHH2fTTTfNmWeemUMOOaS2prq6OpdcckmuvfbavPfee9lggw1yzDHHZPTo0UmSDz74IMOHD8/kyZNTLBbTp0+fjB8/Pp07d07yr98Nx48fn+9973tJks6dO2f77bdfJkehUMhdd92Vfffdt3auXbt2ufzyy3PEEUckSd5///2MGDEikydPzuLFi9O9e/f84he/SO/evZMkd999d84777z8/e9/T+vWrdO3b9/ceeedSZLKysqcddZZuemmm/Lpp59mq622ys9+9rPstttuSZJ33nknJ5xwQh577LFUVlamc+fOueSSS/K9730vn3zySU444YRMnjw5n3/+eTbeeOOceeaZOfLII7/+HxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ORVV1dn0WfzVumZlZWVSfXSJMmCuZ9mSVlZsz7n61iVGet6VnN4bgAAq9KCeXX7fbmkvhufdtppGTZsWC644IK0bNmy3sEAAGhYa665ZqqqqpabX7RoUbbffvuMHDkybdu2zb333pvDDjssXbp0Se/evZMko0aNyrXXXpvLLrssffr0ycyZM/PKK68kSRYsWJB+/fpll112yaOPPpqSkpKcf/752XvvvfPCCy+krKwsFRUVue+++zJ48OC0adPmK+X//PPPs+uuu2ajjTbK3XffnYqKikyfPj3V1dVJknvvvTeDBw/O6NGj89vf/jaVlZW59957a/uPPPLIvP3227n11lvToUOH3HXXXdl7773zt7/9LZtttlmOP/74VFZW5tFHH02rVq3y0ksvpXXr1kmSs88+Oy+99FL+9Kc/Zd11183rr7+ehQsXfmHWxYsXZ/HixbXjeXX8pRsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaHqqq6tz5ZEHp2rRwlV+dpv//ef1JwxbLc75OlZlxrqe1RyeGwDAqrKoqqpOdSX13fiDDz7ISSedlJYtW9Y7FAAADevpp5/OzTffnP79+y+3ttFGG2XEiBG14xNPPDH3339/br/99vTu3TufffZZxo8fnyuvvDKHH354kmTTTTdNnz59kiS33nprisVirrvuuhQKhSTJxIkT065du0yZMiV77bVXrrnmmgwZMiTrrLNOttlmm/Tp0ycHHHBAdt555zrf4eabb85HH32UZ555Ju3bt0+SdO3atXb9pz/9aX7wgx9k7NixtXPbbLNNkuSNN97ILbfckvfffz8dOnRIkowYMSL3339/Jk6cmAsuuCDvvvtu9t9//2y99dZJki5dutTu8+6776Znz57p1atXkqRz585fmvXCCy9cJgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Hwt+mxeqhYtbOwYAACwWiipb8OAAQPy7LPPpkuXLisjDwAA/8Y999yT1q1bZ8mSJamqqsqgQYNyxRVX5KWXXlqmbunSpbnoooty22235YMPPsjixYuzePHitGrVKkny8ssvZ/Hixenfv/8Kz3nuuefy+uuvp02bNsvML1q0KG+88UaSpG/fvnnzzTfz5JNPZtq0aXn44Yczfvz4jB07NmeffXad7jNjxoz07Nkz7du3/8L1o48+eoVr06dPT01NTTbffPNl5hcvXpx11lknSXLSSSfluOOOy+TJk7PHHntk//33T48ePZIkxx13XPbff/9Mnz49e+21V/bdd9/stNNOX5h11KhRGT58eO143rx56dixY53uCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0XYdf+ou0bLvWKjmrsrIyl19xRZLklBNPTFlZWbM+5+tYlRnrelZzeG4AAKvSvHnzctZdnf5tXUl9N/7+97+f008/PS+99FK23nrrlJaWLrM+cODA+m4JAEA99OvXL1dffXVKS0vToUOH2t/HXnrppWXqxo0bl8suuyyXX355tt5667Rq1SqnnHJKKisrkyRrrrnml55TXV2d7bffPjfddNNya+utt17t59LS0uyyyy7ZZZdd8t///d85//zzc95552XkyJEpKytLoVBITU3NMv1VVVW1n/9dji9br66uTosWLfLcc8+lRYsWy6y1bt06SXLUUUdlwIABuffeezN58uRceOGFGTduXE488cTss88+eeedd3Lvvffmz3/+c/r375/jjz8+l1566QrPKy8vT3l5+ZfmBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACan5Zt10rLtdqtkrNKKiuTYot/nbtWu5SVlTXrc76OVZmxrmc1h+cGALAqLSkU61RXUt+Njz766CTJeeedt9xaoVDI0qVL67slAAD10KpVq3Tt2vXf1k2dOjWDBg3KD3/4wyRJdXV1XnvttXTv3j1Jstlmm2XNNdfMQw89lKOOOmq5/u222y633XZb1l9//bRt27bO+bbccsssWbIkixYtSllZWdZbb73MnDmzdv21117LggULasc9evTIddddl48//jjt27dfbr8ePXrkoYceypFHHrncWs+ePbN06dLMnj07u+yyyxdm6tixY4499tgce+yxGTVqVK699tqceOKJSZL11lsvRxxxRI444ojssssuOf3003PppZfW+b4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8E1XrG9DdXX1F/4sXbp0ZWQEAOAr6Nq1ax588ME8/vjjefnll3PMMcdk1qxZtetrrLFGRo4cmTPOOCM33nhj3njjjTz55JO5/vrrkyRDhgzJuuuum0GDBmXq1Kl566238pe//CUnn3xy3n///STJbrvtll/96ld57rnn8vbbb+e+++7LmWeemX79+qVt27ZJkt133z1XXnllpk+fnmeffTbHHntsSktLa3MccsghqaioyL777ptp06blzTffzO9///s88cQTSZJzzz03t9xyS84999y8/PLL+dvf/paLL744SbL55ptnyJAhGTp0aO6888689dZbeeaZZ/Kzn/0s9913X5LklFNOyQMPPJC33nor06dPz8MPP5zu3bsnSc4555z84Q9/yOuvv54XX3wx99xzT+0aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA3xcYOAADAynH22Wdnu+22y4ABA7LbbruloqIi++6773I1p512Ws4555x07949Bx98cGbPnp0kadmyZR599NF861vfyuDBg9O9e/cMGzYsCxcuTNu2bZMkAwYMyA033JC99tor3bt3z4knnpgBAwbkd7/7Xe0Z48aNS8eOHdO3b98ceuihGTFiRFq2bFm7XlZWlsmTJ2f99dfP9773vWy99da56KKL0qJFiyTJbrvtlttvvz133313tt122+y+++556qmnavsnTpyYoUOH5rTTTssWW2yRgQMH5qmnnkrHjh2TJEuXLs3xxx+f7t27Z++9984WW2yRq666qvbsUaNGpUePHunbt29atGiRW2+9teH/MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgNVZS34YJEyascL5QKGSNNdZI165d07dv37Ro0eJrhwMAYFm/+c1vvnBtt912S01NTe24ffv2mTRp0pfuVywWM3r06IwePXqF6xUVFbnhhhu+sH/UqFEZNWrUl57RoUOHPPDAA8vMffrpp8uMO3XqlDvuuOML9xg8eHAGDx68wrXS0tKMHTs2Y8eOXeH6FVdc8YX7nnXWWTnrrLO+cB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+PdK6ttw2WWX5aOPPsqCBQuy9tprp6amJp9++mlatmyZ1q1bZ/bs2enSpUseeeSRdOzYcWVkBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCJKNa34YILLsgOO+yQ1157LXPmzMnHH3+cV199Nb1798748ePz7rvvpqKiIqeeeurKyAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAE1JS34azzjorv//977PpppvWznXt2jWXXnpp9t9//7z55pu5+OKLs//++zdoUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACanmJ9G2bOnJklS5YsN79kyZLMmjUrSdKhQ4d89tlnXz8dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1asb4N/fr1yzHHHJPnn3++du7555/Pcccdl9133z1J8re//S2bbLJJw6UEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEkq1rfh+uuvT/v27bP99tunvLw85eXl6dWrV9q3b5/rr78+SdK6deuMGzeuwcMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LSU1LehoqIiDz74YF555ZW8+uqrqampSbdu3bLFFlvU1vTr169BQwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNJV81cZu3bqlW7duDZkFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGampC5Fw4cPz09+8pO0atUqw4cP/9Lan//85w0SDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICmr6QuRc8//3yqqqpqP3+RQqHQMKkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBZK6lL0yCOPrPAzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN9sxa+7wTvvvJOXXnop1dXVDZEHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGakWNfCG264IZdffvkycz/60Y/SpUuXbL311tlqq63y3nvvNXQ+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqwYl0Lf/nLX2attdaqHd9///2ZOHFibrzxxjzzzDNp165dxo4du1JCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA0ldS18NVXX02vXr1qx3/4wx8ycODADBkyJElywQUX5Mgjj2z4hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0WcW6Fi5cuDBt27atHT/++OPp27dv7bhLly6ZNWtWw6YDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEkr1rWwU6dOee6555Ik//znP/Piiy+mT58+teuzZs3KWmut1fAJAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiySupaOHTo0Bx//PF58cUX8/DDD6dbt27Zfvvta9cff/zxbLXVVislJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNU0ldC0eOHJkFCxbkzjvvTEVFRW6//fZl1qdNm5ZDDjmkwQMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HSV1LWwWCzmJz/5SX7yk5+scP32229vsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA/Fxg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPNVbOwAAACs/mbPnp1jjjkm3/rWt1JeXp6KiooMGDAgTzzxRGNHAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+ppLGDgAAwOpv//33T1VVVW644YZ06dIl//jHP/LQQw/l448/buxoX6iqqiqlpaWNHYMGUl1dnSVLmu6/bwAAAAAAAAAAAPBVVFZWpVis+t/Pc5I0v+8+rg53AAAAAAAAAAAAoHlZnb+71lTv1lRzAQAAAAAAAADQwCo/Ttn//Vj5cVJZqF/7avA9k9XhDgAAAAAAAAAAAAAA8E1UWTnv//v8cUoql6yic1fNuwjN4Z2HVZmxrmc1h+cGALAqVVZ+Vqe6Qk1NTc1KzgIAwDfYp59+mrXXXjtTpkzJrrvuusKauXPn5vTTT8+kSZOyaNGi9OrVK5dddlm22WabJMmYMWMyadKknHbaaTn77LPzySefZJ999sm1116bNm3aJEnuuOOOjB07Nq+//npatmyZnj175g9/+ENatWqV6urqnH/++bnmmmvy0UcfpXv37rnooouy9957J0nefvvtbLLJJrntttty1VVX5cknn8zVV1+dI488cpmcixcvzuLFi2vH8+bNS8eOHTN37ty0bdt2ZTw+GkB1dXUenbptli6d39hRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFZLxaU16TdtTpLkkZ3XSXWLQiMnAgAAAAAAAAAAAAAAqJulVYX87dfdkiRbD3slLUprGjkRAAA0PfPnV2fQwLczd+7ctG3b9gvrivXd+LzzzsuCBQuWm1+4cGHOO++8+m4HAMBqrnXr1mndunUmTZqUxYsXL7deU1OT73//+5k1a1buu+++PPfcc9luu+3Sv3//fPzxx7V1b7zxRiZNmpR77rkn99xzT/7yl7/koosuSpLMnDkzhxxySIYNG5aXX345U6ZMyeDBg1NT86//eDx+/PiMGzcul156aV544YUMGDAgAwcOzGuvvbZMlpEjR+akk07Kyy+/nAEDBiyX9cILL8xaa61V+9OxY8eGfFSsJEuWfJylS+c3dgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1Vahpqampj4NLVq0yMyZM7P++usvMz9nzpysv/76Wbp0aYMGBACg+fv973+fo48+OgsXLsx2222XXXfdNT/4wQ/So0ePPPzww9lvv/0ye/bslJeX1/Z07do1Z5xxRn70ox9lzJgxueSSSzJr1qy0adMmSXLGGWfk0UcfzZNPPpnp06dn++23z9tvv51OnTotd/5GG22U448/PmeeeWbt3I477pgddtghv/jFL/L2229nk002yeWXX56TTz75C++xePHiLF68uHY8b968dOzYMXPnzk3btm0b4lGxElRW/jNTH+udJOm9459SVta+kRMBAAAAAAAAAABAw6isrMrPf35lkmT48BNSVlbayInqb3W4AwAAAAAAAAAAAM3L6vzdtaZ6t6aaCwAAAAAAAACABvb5nJRN2DFJUnnS00nrderVvjp8z2R1uAMAAAAAAAAAAAAAAHwTLZg7L9efcFKS5L+unJCWa7VdJeeuqncRmsM7D6syY13Pag7PDQBgVZo377Ost16XzJ07N23bfvHvzCX13bimpiaFQmG5+b/+9a9p3759fbcDAOAbYP/998/3v//9TJ06NU888UTuv//+XHzxxbnuuuvy0Ucf5fPPP8866yz7P8BZuHBh3njjjdpx586d06ZNm9rxhhtumNmzZydJttlmm/Tv3z9bb711BgwYkL322isHHHBA1l577cybNy8ffvhhdt5552X233nnnfPXv/51mblevXp96T3Ky8tTXl7+lZ4BTUNZWfuUla3b2DEAAAAAAAAAAACggVSmuvpfL1WXla2TsrKyRs7zVawOdwAAAAAAAAAAAKB5WZ2/u9ZU79ZUcwEAAAAAAAAA0KDKav7fx7L2Sb3//sjV4Xsmq8MdAAAAAAAAAAAAAADgm2dJWUnt57Ky9ikra7eKTl5V7yI0h3ceVmXGup7VHJ4bAMCqU9ffh0r+fcm/rL322ikUCikUCtl8881TKBRq15YuXZrPP/88xx57bP2TAgDwjbDGGmtkzz33zJ577plzzjknRx11VM4999z8+Mc/zoYbbpgpU6Ys19OuXbvaz6WlpcusFQqFVFdXJ0latGiRBx98MI8//ngmT56cK664IqNHj85TTz2VddZZp7b+/1dTU7PcXKtWrRrgpgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwzVJS18LLL788NTU1GTZsWMaOHZu11lqrdq2srCydO3fOd7/73ZUSEgCA1c+WW26ZSZMmZbvttsusWbNSUlKSzp07f+X9CoVCdt555+y8884555xz0qlTp9x1110ZPnx4OnTokMceeyx9+/atrX/88cez4447NsBNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCbraSuhYcffniSZJNNNslOO+2U0tLSlRYKAIDVx5w5c3LggQdm2LBh6dGjR9q0aZNnn302F198cQYNGpQ99tgj3/3ud7PvvvvmZz/7WbbYYot8+OGHue+++7LvvvumV69e//aMp556Kg899FD22muvrL/++nnqqafy0UcfpXv37kmS008/Peeee2423XTTbLvttpk4cWJmzJiRm266aWVfHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWeyX1bdhkk00yc+bML1z/1re+9bUCAQCwemndunV69+6dyy67LG+88UaqqqrSsWPHHH300TnzzDNTKBRy3333ZfTo0Rk2bFg++uijVFRUpG/fvtlggw3qdEbbtm3z6KOP5vLLL8+8efPSqVOnjBs3Lvvss0+S5KSTTsq8efNy2mmnZfbs2dlyyy1z9913Z7PNNluZVwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAb4SS+jZ07tw5hULhC9eXLl36tQIBALB6KS8vz4UXXpgLL7zwC2vatGmTCRMmZMKECStcHzNmTMaMGbPM3CmnnJJTTjklSdK9e/fcf//9X7h/sVjMOeeck3POOWeF6507d05NTc2XXwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWKGS+jY8//zzy4yrqqry/PPP5+c//3l++tOfNlgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJq+kvo2bLPNNsvN9erVKx06dMgll1ySwYMHN0gwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJq+YkNttPnmm+eZZ55pqO0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaAZK6tswb968ZcY1NTWZOXNmxowZk80226zBggEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ9JXUt6Fdu3YpFArLzNXU1KRjx4659dZbGywYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1fSX0bHnnkkWXGxWIx6623Xrp27ZqSknpvBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzVlLfhl133XVl5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgGSr5Kk3/8z//kyuuuCIvv/xyCoVCunXrlhNOOCHdunVr6HwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANGHF+jbccccd2WqrrfLcc89lm222SY8ePTJ9+vRsvfXWuf3221dGRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaqJL6NpxxxhkZNWpUzjvvvGXmzz333IwcOTIHHnhgg4UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGkr1rdh1qxZGTp06HLzP/zhDzNr1qwGCQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA81Csb8Nuu+2WqVOnLjf/2GOPZZdddmmQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyX1bRg4cGBGjhyZ5557Lt/5zneSJE8++WRuv/32jB07NnffffcytQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsvkrq2/DjH/84SXLVVVflqquuWuFakhQKhSxduvRrxgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgKSupb0N1dfXKyAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAM1Rs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANF8lX6XpoYceykMPPZTZs2enurp6mbVf//rXDRIMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKavpL4NY8eOzXnnnZdevXplww03TKFQWBm5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgGSurb8Mtf/jK/+c1vcthhh62MPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0I8X6NlRWVmannXZaGVkAAKBRvf322ykUCpkxY0ZjRwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZqNY34ajjjoqN99888rIAgAAdXbEEUekUCikUCikpKQk3/rWt3Lcccflk08+aexoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCNUlLfhkWLFuWaa67Jn//85/To0SOlpaXLrP/85z9vsHAAAPBl9t5770ycODFLlizJSy+9lGHDhuXTTz/NLbfc0tjRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAbo1jfhhdeeCHbbrttisVi/v73v+f555+v/ZkxY8ZKiAgAACtWXl6eioqKbLzxxtlrr71y8MEHZ/LkybXrEydOTPfu3bPGGmukW7duueqqq5bpf/rpp9OzZ8+sscYa6dWrV55//vlVfQUAAAAAAAAAAID/w969x1tVF/j/f+99DnAQ5CB4gSYKCS8/BUEj7CKJqSFZxgPLJrM0C0f94ldG814KXqD64WXMNIbS04zWmEV8lRwdbbSH36+OeCMvKDggfS1h1FQOIhfP5fsH4ykC8hwue50Nz+fjsR9n77U+e63XZ+kf/PFZawMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA1avt6Bfuu+++bdEBAABbZPHixbnrrrvSpUuXJMnMmTNzySWX5LrrrsuBBx6YJ554IhMmTEiPHj1y4oknZuXKlfn0pz+dT3ziE7n55pvzwgsv5Mwzz/yr51izZk3WrFnT9rmxsXGbzgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqkFt0QEAALC55syZk549e6a5uTmrV69Oklx11VVJkssuuyxXXnllxo8fnyTZc889M3/+/MyYMSMnnnhibrnlljQ3N+fGG2/MTjvtlP333z+///3vc9ppp23yfNOmTcuUKVO2/cQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoIrUtnfg+PHj2zVu1qxZmx0DAAAdcdhhh+WGG27IW2+9lR/+8IdZuHBhzjjjjLzyyit58cUX87WvfS0TJkxoG9/U1JT6+vokybPPPpthw4Zlp512atv/kY985K+e74ILLshZZ53V9rmxsTEDBgzYyrMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpS296B9fX127IDAAA6rEePHhk8eHCS5Nprr81hhx2WKVOmZOLEiUmSmTNn5uCDD17vOzU1NUmS1tbWDp+vW7du6dat2xZWAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD2pba9A2+66aZt2QEAAFvskksuydixY3Paaaflb/7mb7J48eJ86Utf2ujY/fbbL//8z/+cVatWpXv37kmS//iP/6hkLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsF8pFBwAAwNYyevTo7L///pk6dWomT56cadOm5R/+4R+ycOHCPPXUU7npppty1VVXJUmOP/74lMvlfO1rX8v8+fNz5513Zvr06QXPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqT7noAAAA2JrOOuuszJw5M2PGjMkPf/jDNDQ0ZOjQoTn00EPT0NCQPffcM0nSs2fP3HHHHZk/f34OPPDAXHTRRfnOd75TcD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVJ/aogMAAGBzNDQ0bHT78ccfn+OPP36D9xvz4Q9/OPPmzVtvW2tr69ZKBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAdQrnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqV7noAAAA2FJLlixJqVTKvHnzik4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgB1OuegAAAB4NyeddFJKpVLbq2/fvjnqqKPy5JNPFp0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADu8ctEBAADQHkcddVSWLl2apUuX5te//nVqa2vz6U9/uugsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjhlYsOAACA9ujWrVv69euXfv36Zfjw4TnvvPPy4osv5pVXXtlgbENDQ3r37r3ettmzZ6dUKq237Y477sgHP/jB1NXVZdCgQZkyZUqampq25TQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYLtTW3QAAAB01JtvvplbbrklgwcPTt++fbNy5coOH+Puu+/OCSeckGuvvTajRo3KokWLcsoppyRJLrnkko1+Z82aNVmzZk3b58bGxs2bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsR8pFBwAAQHvMmTMnPXv2TM+ePbPzzjvn9ttvz6233ppyefP+SXvFFVfk/PPPz4knnphBgwblyCOPzGWXXZYZM2Zs8jvTpk1LfX1922vAgAGbOx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2G6Uiw4AAID2OOywwzJv3rzMmzcvDz/8cD75yU9m7Nix+d3vfrdZx3vsscdy6aWXpmfPnm2vCRMmZOnSpXnrrbc2+p0LLrggy5cvb3u9+OKLWzIlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgu1BYdAAAA7dGjR48MHjy47fMHP/jB1NfXZ+bMmfn617++3thyuZzW1tb1tr399tvrfW5pacmUKVMyfvz4Dc5VV1e30YZu3bqlW7dumzsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgu1RYdAAAAm6NUKqVcLmfVqlUb7Nttt92yYsWKrFy5Mj169EiSzJs3b70xBx10UBYsWJDBgwdXIhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtlu1RQcAAEB7rFmzJsuWLUuSvP7667nuuuvy5ptv5jOf+cwGYw8++ODstNNOufDCC3PGGWdk7ty5aWhoWG/MxRdfnE9/+tMZMGBAPv/5z6dcLufJJ5/MU089lcsvv7wSUwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7UK56AAAAGiPu+66K/3790///v1z8MEH55FHHsltt92W0aNHbzC2T58+ufnmm3PnnXdm6NCh+elPf5rJkyevN2bMmDGZM2dO7rnnnnzoQx/Khz/84Vx11VV5//vfX5kJAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB2orboAAAAeDcNDQ1paGjY5P6BAwemtbV1vW3jxo3LuHHj1ts2YcKE9T6PGTMmY8aM2VqZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBDKhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAADAjmvZsmU588wzM3jw4NTV1WWPPfbIIYcckh/84Ad56623is4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANqhtugAAAB2TIsXL87HPvax9O7dO1OnTs3QoUPT1NSUhQsX5sYbb8x73vOeHHPMMRt87+23306XLl0KKAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANqa26AAAAHZMp59+empra/Poo4+mR48ebduHDh2aY489Nq2trUmSUqmUG264If/6r/+ae++9N9/4xjcyZcqU3HHHHZk8eXKeeeaZvOc978mJJ56Yiy66KLW16/6Ju3z58pxzzjmZPXt2Vq9enREjRuTqq6/OsGHDkiSTJ0/O7Nmzc/bZZ+db3/pWXn/99YwdOzYzZ87MzjvvXPkLAgAAAAAAAAAAAAAAAAAAAAAAAAB/RUtLS15f83rRGVVv7dq1aSo1JUn+uOqP6drcteCiraezzq2zdgEAAAAAAAAAsJWtfi19//vtH1e/ltSUO/T17WGdyfYwBwAAAAAAAAAAAAAA2BGtWrW87f1rq17Lqq7NFTlvpe5FqIZ7HirZ2N5zVcN1AwCopBWrVrRrXO027gAAgA388Y9/zL/9279l6tSp6dGjx0bHlEqltveXXHJJpk2blquvvjo1NTW5++67c8IJJ+Taa6/NqFGjsmjRopxyyiltY1tbW3P00UenT58+ufPOO1NfX58ZM2bk8MMPz8KFC9OnT58kyaJFizJ79uzMmTMnr7/+eo477rh8+9vfzhVXXLHRpjVr1mTNmjVtnxsbG7fWJQEAAAAAAAAAAAAAAAAAAAAAAACATWppaclHf/rRrGxaWXTK9mHguj//a/b/KjRjmxi47k+nm9vAdX86XRcAAAAAAAAAAFtN95aWzP3v92PvGJ9V5XLHDzJw3Z+qXmcycN2fqp4DAAAAAAAAAAAAAADsYGqbSjkh70uSfOZX49JU21q5kw9c92eb34tQqfNsiYHr/lSksb3nau84AIAdQPOq5naN24y7jAEAYMv853/+Z1pbW7PPPvust33XXXdNz54907Nnz5x33nlt248//vicfPLJGTRoUN7//vfniiuuyPnnn58TTzwxgwYNypFHHpnLLrssM2bMSJLcd999eeqpp3LbbbdlxIgR2WuvvTJ9+vT07t07P//5z9uO29LSkoaGhgwZMiSjRo3Kl7/85fz617/eZPe0adNSX1/f9howYMBWvjIAAAAAAAAAAAAAAAAAAAAAAAAAsKHX17yelU0ri84AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYpNqiAwAA2HGVSqX1Ps+dOzctLS350pe+lDVr1rRtHzFixHrjHnvssTzyyCO54oor2rY1Nzdn9erVeeutt/LYY4/lzTffTN++fdf73qpVq7Jo0aK2zwMHDszOO+/c9rl///55+eWXN9l7wQUX5Kyzzmr73NjYmAEDBrRztgAAAAAAAAAAAAAAAAAAAAAAAACw5X55zC+zS90uRWdUrbVr1+b713w/SfI/Jv2PdO3ateCiraezzq2zdgEAAAAAAAAAsJWtfDW5bmSS5F8/MyvpsWuHvr49rDPZHuYAAAAAAAAAAAAAAAA7olXLl+fWf/ufSZI7jp6d7vX1FTlvpe5FqIZ7HirZ2N5zVcN1AwCopBWNK7LnaXu+67jaCrQAAMB6Bg8enFKplOeee2697YMGDUqSdO/efb3tPXr0WO9zS0tLpkyZkvHjx29w7Lq6urS0tKR///65//77N9jfu3fvtvddunRZb1+pVEpLS8smu7t165Zu3bptcj8AAAAAAAAAAAAAAAAAAAAAAAAAbGu71O2Svt37Fp1RtdbWrE1t67rHc/ft3ne7+oGTzjq3ztoFAAAAAAAAAMBW1vyn3wTtW9cn6eA6p+1hncn2MAcAAAAAAAAAAAAAANgRvbW2pu19n+59slP33hU5b6XuRaiGex4q2djec1XDdQMAqKQub3dp17jabdwBAAAb6Nu3b4488shcd911OeOMM9KjR48Off+ggw7KggULMnjw4E3uX7ZsWWprazNw4MCtUAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbEq56AAAAHZM119/fZqamjJixIjceuutefbZZ7NgwYLcfPPNee6551JTU7PJ71588cX5p3/6p0yePDnPPPNMnn322dx666355je/mSQ54ogj8pGPfCTjxo3L3XffnSVLluTBBx/MN7/5zTz66KOVmiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BBqiw4AAGDH9IEPfCBPPPFEpk6dmgsuuCC///3v061bt+y33375xje+kdNPP32T3x0zZkzmzJmTSy+9NN/97nfTpUuX7Lvvvvn617+eJCmVSrnzzjtz0UUX5eSTT84rr7ySfv365eMf/3j22GOPSk0RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHYItUUHAACw4+rfv3++973v5Xvf+94mx7S2tm50+5gxYzJmzJhNfm/nnXfOtddem2uvvXaj+ydPnpzJkyevt23SpEmZNGnSu3YDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9SLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVW3QAAAAAAAAAAAAAAAAA0HHNzc1ZsmRJVqxYkfvuuy+1tbV5+eWX079//4waNSo1NTWFdT3wwANZunTpu7b8+Rx+85vf5BOf+MQ26e5IEwAAAAAAAAAAQGf3fx74P1n5x5Wdcj1UNazX6ujatWqY0zsqtS6vEl3VdN0BAAAAAAAAANhQc3NzHrj//g6t/+is6186oiNzsEYGAAAAAAAAAAAAAAA6p5///Bd53wc+UJG1/tvquZ1/OWbEiBEVfyZrR49RyXtL2nOu5ubm3H///ev9lvwRRxzRqe7/6OhvyruXBQColFJra2tr0REAAFCNGhsbU19fn+XLl6dXr15F57AJa9e+mgf+98FJklGHPJyuXXctuAgAAAAAAAAAAAC23KxZs3LWWWfld7/7Xdu22traNDU1JUkGDhyYK6+8MuPHj69419lnn50lS5a0bdtUy8bmsC26O9IEAAAAAAAAAADQWf1x1R8z+mejkyTPnPJMWteue7R0Z1oPVQ3rtTq6dq0a5vSOSq3Lq0RXNV13AAAAAAAAAAD+zJuvJNMHJ0n2u7l3nl30f9t2tWfNSGdc/9IRHZmDNTIAAAAAAAAAAAAAANC5/MvNN+cPd/xLkuTCX9yVtc3N23yt/7Z6bufGxtTV1WX16tXtOs/WuO+ho8eo5L0l7TnXrFmzcuqpp+b1119v++34JNljjz1y/fXXd4r7Pzr6m/LuZQEAtobGxsbU19dn+fLl6dWr1ybHlSvYBAAAAAAAAAAAAAAAAGyhWbNm5XOf+1wOOOCAPPTQQ1mxYkUeeuihHHXUUSmVSpk2bVqGDh2az33uc5k1a1bFu4YOHbpe18ZaNjWHrd3dkSYAAAAAAAAAAIDObM7tc9re33fffZ1uPVQ1rNfq6Nq1apjTOyq1Lq8SXdV03QEAAAAAAAAA2LT9hwzp8JqRzrb+pSM6MgdrZAAAAAAAAAAAAAAAoHOZNWtWTvzqV9s+L/uvZdt8rf+2em7nX465+eabUyqVcsQRR1TsmawdPUYl7y1pz7lmzZqVY489Nq+++mrGjh273rgRI0Z0ivs/Nuc35d3LAgBUUqm1tbW16AgAAKhGjY2Nqa+vz0svvZRevXoVncMmvPHa/81jD41LkuzW9dyUyzsXGwQAAAAAAAAAAABboLWlOWdecFEGDd47l06enFKp/Kd9rS25ePLkLFnyQn58U0MumTIlLyx6PtdMvTylck3hXe+0JGn32C3p7kjTtr4+AAAAAAAAAAAAW6K1pTmTvnVRenx53bPUZhwxM3VduiVJWlpac8GFF2Tx8wvzw6uvTk0B66GaW5rztUl/nw/svXemTZ2WcrnUtq8z9G1OYzXM6R2dtXVzujrrXAAAAAAAAAAAaJ/WtW+k/0OTkiSNX7wn5W492va1tLTm7LP/Ps8vXJib//HG1NT895qR5uZ86ZSvZu+998mVV169wZqRjX2ns+nIHJJU/XwBAAAAAAAAAAAAAGB78s59AfvuvU+G7bRunf9Xrrg6Xbp2TUtrSyZOnJiFCxZm9k9uTalcfpejtU9rS0vGHX9c9t5nn1x33XUp/9nvb2/qnO36znML0ppkn33XjWltTcaMGZO9996rXefZnK4tndvWOOfWve4L0tLSmsYVKzJy5Ic2Ou700yfmP59fkNk/+dlW+39i689j3TVLUrHrCwDsGFa8+WaGHz4qy5cvT69evTY5rtTa2tpawS4AANhuNDY2pr6+vugMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANimli9fnl69em1yf7mCLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsZ2qLDgAAgGr30ksvpVevXkVnsAlvNjZm8cN3JklKpR4plcoFFwEAAAAAAAAAAMDme+a5hbnsu/9/rr32H/L/7bvfBvvnP/tMzjxzUq668srU1NbkzDMn5VvnnpP99927U3R969xzkqTdY7ekuyNN2/r6AAAAAAAAAAAAbIk/Xw81fMiBKZXW3//000/ntFNPy7cv/maG7bd/xft+O/+ZnH/p5blhxg8yZP8Nz190X9LxxmqY0zs6a+vmdHXWuQAAAAAAAAAA0D7vrP+4fuZNGXrAARvsf/LJJ/PVr341V0/9dg4cNjxJ8sRv5+XvLzw/DQ0NGTp0aLu+09l0ZA5Jqn6+AAAAAAAAAAAAAACwPfnL+wJqu3ZJKaU/2//bfOmLX8yMa6/LQcMP3CrnfHzeE/m7/zkxP/mXn2b4AcM20rThOdv7nSRtY+bOnZuTTjqp3efZnK4tndvWOGd7deQaJqlI0+boyDVLUrHrCwDsGFa8+WaGHz7qXceVWltbWyvQAwAA253GxsbU19dn+fLl6dWrV9E5AAAAAAAAAAAAwA6gubk5gwcPztChQzN79uyUy+W2fS0tLRk3blyefvrpLFiwIMcee2yefvrpPP/886mpqekUXc8//3yStHvslnR3pGlbXx8AAAAAAAAAAIAt0dnXQ3X2vs1prIY5vaOztm5OV2edCwAAAAAAAAAA7bOjrhnpjM/hAgAAAAAAAAAAAAAA2qeIexu21T0YTz31VJK0jWltba34M1k783Ng23uu5ubmvPbaaznssMM2Ou6YY47J/Pnzq+J5wIl7WQCArauxsTH19fVZvnx5evXqtclx5U3uAQAAAAAAAAAAAAAAADqVmpqaXHnllZkzZ07GjRuXhx56KCtWrMhDDz2Uz372s5kzZ04mTJiQY489NnPmzMn06dMrcnPyX+saN27cei0dGVupJgAAAAAAAAAAgM6ss6+H6ux9m9NYDXN6R2dt3ZyuzjoXAAAAAAAAAADaZ0ddM9IZn8MFAAAAAAAAAAAAAAC0TxFr/bfVPRhXXnnlemPmzp2byy+/PHPmzMlnP/vZijyTtTM/B7a957r66qvz5ptvbvS6HXPMMbnzzjur5nnA7mUBAIpSam1tbS06AgAAqlFjY2Pq6+uzfPny9OrVq+gcAAAAAAAAAAAAYAcya9asnH322VmyZEnbttra2jQ1NSVJ9txzz0yfPj3jx4+veNdZZ52V3/3ud23bNtWysTlsi+6ONAEAAAAAAAAAAHRmnX09VGfvSzq+dq0a5vSOSq3Lq0RXNV13AAAAAAAAAAA2tDnrPzrr+peO6MgcrJEBAAAAAAAAAAAAAIDOpYi1/tvquZ0bG9OtW7esWbOmXefZGteio8eo5L0l7TnXrFmzcuqpp+b1119v++34JOnXr1++//3vd4r7Pzr6m/LuZQEAtobGxsbU19dn+fLl6dWr1ybHlVpbW1sr2AUAANuN9v6jGwAAAAAAAAAAAGBbaG5uzgMPPJClS5emT58+ueWWW7Jy5cqceuqp+cQnPpGamppCulatWpXTTjstK1aseNeWP59D//79M2rUqG3S3ZEmAAAAAAAAAACAzqyzr4fq7H1Jx9euVcOc3lGpdXmV6Kqm6w4AAAAAAAAAwIY2Z/1HZ13/0hEdmYM1MgAAAAAAAAAAAAAA0LkUsdZ/Wz238y/HHHrooXnwwQcr+kzWjh6jkveWtOdcq1atyt/93d9lyZIlOeSQQ3L44Ydn9OjRner+j45cY/eyAABbQ2NjY+rr67N8+fL06tVrk+NqK9gEAAAAAAAAAAAAAAAAbCU1NTUZPXp0kmTt2rV56KGHkiSHHnpooTcn19TUZODAge1q+fM5dJYmAAAAAAAAAACAzqyzr4fq7H1Jx9euVcOc3lGpdXkdtTld1XTdAQAAAAAAAADY0Oas/+is6186oiNzsEYGAAAAAAAAAAAAAAA6lyLW+m+r53b+5ZiuXbtW/JmsHT1GJe8tac+5ampqMmjQoAwaNCgXXnhhunbtWpG2jujob8q7lwUAqJRy0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAKzz4osv5ve//33b57lz52bSpEn5x3/8xwKrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+unLRAQAArHP88cfnvvvuS5IsW7YsRx55ZObOnZsLL7wwl156acF1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbVy46AACAdZ5++umMHDkySfKzn/0sQ4YMyYMPPpif/OQnaWhoKDYOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGATykUHAACwzttvv51u3bolSe69994cc8wxSZJ99903S5cuLTINAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCTykUHAACwzv77758f/OAHeeCBB3LPPffkqKOOSpK89NJL6du3b8F1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbVy46AACAdb7zne9kxowZGT16dL74xS9m2LBhSZLbb789I0eOLLgOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDjaosOAABgndGjR+fVV19NY2Njdtlll7btp5xySnbaaacCywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANq226AAAANZ54YUX0tTUlL322mu97W+//XbeeuutgqoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP66ctEBAACsc9JJJ+XBBx/cYPvDDz+ck046qfJBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtUC46AACAdZ544ol87GMf22D7hz/84cybN6/yQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7VAuOgAAgHVKpVJWrFixwfbly5enubm5gCIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHdXLjoAAIB1Ro0alWnTpqW5ubltW3Nzc6ZNm5ZDDjmkwDIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgE2rLToAAIB1vvvd7+bjH/949tlnn4waNSpJ8sADD6SxsTH//u//XnAdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDGlYsOAABgnf322y9PPvlkjjvuuLz88stZsWJFvvKVr+S5557LkCFDis4DAAAAAAAAAAAAAAAAAAAAAAAAADqBXXfdNbvuumvRGZvU2fsAAAAAAAAAAAAAAAAAAAAAAAAAAABge9CR5wF7djAAUCm1RQcAAPAn73nPezJ16tSiMwAAAAAAAAAAAAAAAAAAAAAAAACATqhLly454YQT2t53Np29DwAAAAAAAAAAAAAAAAAAAAAAAAAAALYHHXkesGcHAwCVVFt0AADAjuzJJ5/MkCFDUi6X8+STT/7VsQcccECFqgAAAAAAAAAAAAAAAAAAAAAAAACAzqi1tTVr165te18qlQouWl9n7wMAAAAAAAAAAAAAAAAAAAAAAAAAAIDtQUeeB+zZwQBAJZWLDgAA2JENHz48r776atv7Aw88MMOHD9/gdeCBBxZcCgAAAAAAAAAAAAAAAAAAAAAAAAB0Bk1NTWlqakqSlEqlzJ49u93fvf/++1MqlfLGG29sk7ZyuZzdd989u+++e8rljT8Ce/To0Zk0aVLb54EDB+aaa67ZJj1/qaGhIb17967IuQAAAAAAAAAAAAAAAAAAAAAAAAAAAGBbac/zgP/cnz/bOKnss4EBgB3Lu//LBACAbeaFF17Ibrvt1vZ+8eLFeeGFFzZ4LV68uOBSAAAAAAAAAAAAAAAAAAAAAAAAAKCSTjrppJRKpZRKpdTW1uZ973tfTj/99LzxxhttY5YuXZqxY8du1fNOnjw5w4cP3+i+J554Ip///Oezxx57pK6uLnvvvXcmTJiQhQsXbvF577///rb5burV0NCwRef4whe+sFVaAQAAAAAAAAAAAAAAAAAAAAAAAAAAoL1Gjx6dSZMmbbB99uzZKZVKSZKGhob07t27bfxfe1bvwIEDt7jpkUceySmnnLLFxwEA+Eu1RQcAAOzI3v/+92/0PQAAAAAAAAAAAAAAAAAAAAAAAADAUUcdlZtuuilNTU2ZP39+Tj755CxbtizXX399kqRfv34Va5kzZ06OPfbYjBkzJrfccks+8IEP5OWXX85tt92Wb33rW7n11lu36Pgf/ehHs3Tp0rbPZ555ZhobG3PTTTe1bauvr9+ic3Tv3j3du3ffomMAAAAAAAAAAAAAAAAAAAAAAAAAAADAtjRr1qysXbs2SfLiiy9m5MiRuffee7P//vsnSWpqarb4HLvtttsWHwMAYGPKRQcAAPAnCxYsyMSJE3P44YfniCOOyMSJE7NgwYKiswAAAAAAAAAAAAAAAAAAAAAAAACAAnTr1i39+vXLe9/73nzyk5/Mcccdl9/85jdt+0ulUmbPnt32+cEHH8zw4cNTV1eXESNGZPbs2SmVSpk3b956x33ssccyYsSI7LTTTvnoRz/a9uzDhoaGTJkyJb/97W9TKpVSKpXS0NCQt956K1/96lfzqU99KrfffnuOOOKI7Lnnnjn44IMzffr0zJgxo+3Y8+fPz6c+9an07Nkze+yxR7785S/n1Vdffde5du3aNf369Wt7de/evW3+/fr1yy677JLzzjsvu+++e+rq6nLIIYfkkUceafv+/fffn1KplF/96lcZNmxY6urqcvDBB+epp55qG9PQ0JDevXuvd97bb789I0aMSF1dXXbdddeMHz++Pf9pAAAAAAAAAAAAAAAAAAAAAAAAAAAAYJvo06dP27N5d9tttyRJ375927bNnz8/I0eOTLdu3dK/f/+cf/75aWpqavv+6NGjM3HixEycODG9e/fObrvtlu985ztpbW1tGzNw4MBcc801bZ/feOONnHLKKdljjz1SV1eXIUOGZM6cORWbMwCw/SgXHQAAwDo///nPM2TIkDz22GMZNmxYDjjggDz++OMZMmRIbrvttqLzAAAAAAAAAAAAAAAAAAAAAAAAAIACLV68OHfffXe6dOmy0f0rVqzIZz7zmQwdOjSPP/54Lrvsspx33nkbHXvRRRflyiuvzKOPPpra2tqcfPLJSZIvfOELOfvss7P//vtn6dKlWbp0ab7whS/k7rvvzquvvppzzz13o8fr3bt3kmTp0qU59NBDM3z48Dz66KO566678l//9V857rjjtnj+5557bn7xi1/kxz/+cR5//PEMHjw4Y8aMyWuvvbbeuHPOOSfTp0/PI488kt133z3HHHNM3n777Y0e81e/+lXGjx+fo48+Ok888UR+/etfZ8SIEVvcCgAAAAAAAAAAAAAAAAAAAAAAAAAAANvCH/7wh3zqU5/Khz70ofz2t7/NDTfckB/96Ee5/PLL1xv34x//OLW1tXn44YdzzTXXZObMmfnJT36y0WO2tLRk7NixefDBB3PzzTdn/vz5+fa3v52amppKTAkA2M7UFh0AAMA65557bi644IJceuml622/5JJLct555+Xzn/98QWUAAAAAAAAAAAAAAAAAAAAAAAAAQBHmzJmTnj17prm5OatXr06y7jmFG3PLLbekVCpl5syZqaury3777Zc//OEPmTBhwgZjr7jiihx66KFJkvPPPz9HH310Vq9ene7du6dnz56pra1Nv3792sY///zzSZJ99933r/becMMNOeiggzJ16tS2bTfeeGMGDBiQhQsXZu+99+7YBfhvK1euzA033JCGhoaMHTs2STJz5szcc889+dGPfpRzzjmnbewll1ySI488Msm6HwN573vfm1/+8pc57rjjNnod/vZv/zZTpkxp2zZs2LDNagQAAAAAAAAAAAAAAAAAAAAAAAAAAIBt7frrr8+AAQNy3XXXpVQqZd99981LL72U8847LxdffHHK5XKSZMCAAbn66qtTKpWy11575eGHH87MmTNz9tlnb3DMe++9N3Pnzs2zzz7b9hzhQYMGVXReAMD2o1x0AAAA6yxbtixf+cpXNth+wgknZNmyZQUUAQAAAAAAAAAAAAAAAAAAAAAAAABFOuywwzJv3rw8/PDDOeOMM/LJT34yJ5988kbHLliwIAcccEDq6urato0cOXKjYw844IC29/3790+SvPzyy5vsaG1tbVfvY489lvvuuy89e/Zse+27775JkkWLFrXrGBuzaNGivP322/nYxz7Wtq1Lly4ZOXJknn322fXGfuQjH2l736dPn+zz/9i783Ct58R//M/7tOu0EHWKVkVKTWLsyp59SzUa0jTWkCXLGJ/5WLJMxpKMZGwZmcFk9GkwkcjInhEhFUrM1JgY/GRGyzm/P1zur6NV6Gg8Htd1X9d9v9bn+3380eV6LZtvvkybz02dOjV77LHHGucCAAAAAAAAAAAAAAAAAAAAAAAAAACAtWn69OnZYYcdUigUimU77bRTPv7447zzzjvFsu23375Sm6233jqzZ8/O0qVLlxlz6tSp2WSTTbLZZpt9u+EBgO+FkqoOAADAZ3bdddc8/vjjy5RPnjw5u+yySxUkAgAAAAAAAAAAAAAAAAAAAAAAAACqUt26ddO2bdt07tw5w4cPz6JFi3LVVVctt21FRUWliy8+L1ueGjVqFL9/3qe8vHyFOT6/IOO1115bad7y8vIceOCBmTp1aqXPrFmz0q1bt5X2XZnPn2N5z/flsuVZUZs6deqscSYAAAAAAAAAAAAAAAAAAAAAAAAAAABYHfXr18+HH364TPkHH3yQ+vXrf6WxVnYW8eqc17s8zuoFAL5JJVUdAACAzxx00EE555xzcvLJJ2f06NEZPXp0Tj755PzsZz/LoYcemnHjxhU/AAAAAAAAAAAAAAAAAAAAAAAAAMD3zy9+8YvccMMNmT9//jJ17du3z0svvZRPP/20WDZlypSvPEfNmjWzdOnSSmV77713Ntxww1x++eXL7fPBBx8kSbp27ZpXXnklrVq1Stu2bSt96tat+5WzfK5t27apWbNmJk+eXCxbvHhxpkyZki222KJS26effrr4/V//+ldmzpyZ9u3bL3fczp07Z+LEiWucCwAAAAAAAAAAAAAAAAAAAAAAAAAAAFalffv2yz0v+Lnnnsvmm2/+lcbq0KFDnnzyyVRUVBTLnnzyydSrVy8bb7xxseyLZ/UmyV//+te0bt061apVW2bMzp0755133snMmTO/UhYAgOUpqeoAAAB8ZuDAgVmwYEFGjBiRfv36pV+/fhkxYkT++c9/ZuDAgTnkkENyyCGH5NBDD63qqAAAAAAAAAAAAAAAAAAAAAAAAABAFdh1112z2Wab5dprr12mrm/fvikvL89xxx2X6dOn58EHH8wVV1yRJCkUCqs9R6tWrTJ79uxMnTo1CxYsyKeffpq6devmpptuyv3335+DDjooDz/8cObMmZMpU6bk7LPPzgknnJAkOemkk/L+++/niCOOyLPPPps333wzDz30UAYMGJClS5eu8XPXrVs3J554Ys4666yMHz8+r776ao499th88skn+elPf1qp7UUXXZSJEyfm5ZdfTv/+/bPhhhvmkEMOWe64559/fn7/+9/n/PPPz/Tp0zNt2rRcfvnla5wTAAAAAAAAAAAAAAAAAAAAAAAAAAAAvmzgwIF54403ctJJJ+XFF1/MzJkzc9111+Xmm2/OWWed9ZXHevvtt3PKKafktddey//93//l/PPPzxlnnJGSkpJiu7fffjtnnHFGzkTlmgAAzrtJREFUZsyYkd///ve55ZZbljnP93Pdu3dPt27d0rNnz0yYMCGzZ8/On//854wfP/5rPTcA8P1UsuomAACsDeXl5av1+TqXSwEAAAAAAAAAAAAAAAAAAAAAAAAA67bjjjsuv/vd7/L2229XKq9fv37+9Kc/ZerUqenSpUvOO++8/O///m+SpHbt2qs9fs+ePbPPPvtkt912y0YbbZTf//73SZKDDz44Tz75ZGrUqJG+ffumffv2OeKII/Lhhx/m4osvTpI0a9YsTzzxRJYuXZoePXpkyy23zKmnnpoGDRpUuqRjTfzyl79Mz549c9RRR6Vr1655/fXX8+CDD2b99ddfpt2pp56arbfeOvPmzcu4ceNSs2bN5Y6566675g9/+EPGjRuXLl26ZPfdd88zzzzztXICAAAAAAAAAAAAAAAAAAAAAAAAAADAF7Vq1SqPP/543njjjey999754Q9/mFGjRmXUqFHp1avXVxpr4403zgMPPJBnn302P/jBD3LCCSfkpz/9af7nf/6nUrt+/frl3//+d7bddtuccsopGTBgQI488sgVjnvPPffkhz/8YY444oh06NAhZ599dpYuXbpGzwsAfL9Vr+oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFQ2atSo5ZYfeuihOfTQQ1NWVpaKiopKdTvuuGNefPHF4u877rgjNWrUSIsWLZIku+666zJ9unTpUqmsVq1aGTNmzHLn3mabbXLPPfesNHe7du3yxz/+cYX1kyZNqvR7zpw5y2335eevXbt2hg8fnuHDh690/p133jkvv/zycuv69++f/v37Vyo77LDDcthhh610TAAAAAAAAAAAAAAAAAAAAAAAAAAAAPg6tt5664wfP36F9cs7PzdJWrVqtcy5wt27d8+zzz670vlq1KiRYcOG5frrr095eXnmz59fqf7LZwNvsMEGueWWW1b+EAAAq6GkqgMAAPD/PPbYYznwwAPTtm3btGvXLgcddFAef/zxqo4FAAAAAAAAAAAAAAAAAAAAAAAAAKwDfvvb32by5MmZPXt2xo4dm3POOSe9e/dOnTp1qjoaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwX66kqgMAAPCZ0aNHZ88998x6662XQYMG5eSTT06dOnWyxx575He/+11VxwMAAAAAAAAAAAAAAAAAAAAAAAAAvuPmz5+fI488MltssUVOP/309OrVK7/5zW+qOhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA9UL2qAwAA8JlLLrkkl19+eU4//fRi2amnnpqrrroqQ4YMSd++faswHQAAAAAAAAAAAAAAAAAAAAAAAADwXVC9+oqPlj777LNz9tlnr8U03x277rprKioqqjoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAVKlJkyYtU7ays40BAL5JJVUdAACAz7z55ps58MADlyk/6KCDMnv27CpIBAAAAAAAAAAAAAAAAAAAAAAAAAB8lxQKhdSsWTM1a9ZMoVCo6jgAAAAAAAAAAAAAAAAAAAAAAAAAAADAd5yzjQGAtamkqgMAAPCZ5s2bZ+LEicuUT5w4Mc2bN6+CRAAAAAAAAAAAAAAAAAAAAAAAAADAd8nixYszevTojB49OosXL67qOAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB3nLONAYC1qXpVBwAA+L4bMGBArrnmmgwePDiDBg3K1KlTs+OOO6ZQKGTy5MkZNWpUrrnmmqqOCQAAAAAAAAAAAAAAAAAAAAAAAAB8ByxYsKCqIwAAAAAAAAAAAAAAAAAAAAAAAAAAAADrEGcbAwBrS/WqDgAA8H1322235Ze//GVOPPHElJWV5corr8zdd9+dJNliiy1y11135eCDD67ilAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy1e9qgMAAHzfVVRUFL8feuihOfTQQ6swDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAV1NS1QEAAEgKhUJVRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWCPVqzoAAADJZpttlkKhsNI277///lpKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw+qpXdQAAAJILL7wwDRo0qOoYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfWfWqDgAAQPKjH/0ojRs3ruoYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfWUlVBwAA+L4rFApVHQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYI2VVHUAAIDvu4qKiqqOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwxqpXdQAAgO+78vLyqo4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDGSqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO4qqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKy7Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsO6qXtUBAAAAAAAAAAAAAAAAgK9vww03rOoIRd+lLAAAAAAAAAAAAP9trNECAAAAAAAAAADWBdY6AQAAAAAAAAAAAAAA65p1ZT/E6uRcV54FAID/PtWrOgAAAAAAAAAAAAAAAADw9dSoUSNHHnlk8bssAAAAAAAAAAAA/52s0QIAAAAAAAAAANYF1joBAAAAAAAAAAAAAADrmnVlP8Tq5FxXngUAgP9O1as6AAAAAAAAAAAAAAAAAPD1FAqFNGzYsKpjJEkqKiqyaNGi4vdCoVDFiQAAAAAAAAAAAP57fJfWiwEAAAAAAAAAAKyItU4AAAAAAAAAAAAAAMC6Zl3ZD7E694i7axwAgKpUUtUBAAAAAAAAAAAAAAAAgP8uS5YsyZIlS1baZs6cOSkUCikUCunSpctXGr9///7FvmPHjl3zoAAAAAAAAAAAAAAAAAAAAAAAAN8BF1xwwVc6j2lVZzC1atUqw4YN+9q5vk9atWpVPN/qgw8+WO1+o0aNKvY77bTTvrV8AAAAAAAAAAAAAADw32Ds2LFp27ZtqlWrZh3+17A694h/3mbUqFFp2LBhsfyr7mMBAICvqqSqAwAAAAAAAAAAAAAAAMC3Zf78+Tn11FPTtm3b1K5dO02aNMnOO++ckSNH5pNPPlmtMVa06fuFF17IAQcckMaNG6d27dpp1apV+vTpkwULFnzDT/HNu+CCC4qX+lWvXj0bbrhhunXrlmHDhuXTTz/9SmNNmjTpK18q+EUPP/xwJk6cWKnsnnvuSYcOHVKrVq106NAh9957b6X6a665JvPmzVuj+QAAAAAAAAAAAL6Od999N8cff3xatGiRWrVqpaysLD169MhTTz31tcbdddddV3g5zD333JPdd98966+/ftZbb71svvnmGTBgQF544YWvNScAAAAAAAAAALB29e/fv3j+U40aNdKmTZuceeaZWbhwYc4888xlzmP6Op577rkcd9xx39h4n7vhhhvygx/8IHXr1k3Dhg2z1VZbZejQod/4PFXloosuyrx589KgQYNi2bRp09K9e/fUqVMnG2+8cS666KJUVFQU6/v06ZN58+Zlhx12qIrIAAAAAAAAAAAAAACw1nwTZ7Mef/zxOfzww/P2229nyJAhK207Z86c4l6MFX0uuOCClY7x6KOPZrfddssGG2yQ9dZbL+3atcvRRx+dJUuWrHbmqjR//vyccsopadOmTWrVqpXmzZvnoIMOyuOPP17V0QAAYIWqV3UAAAAAAAAAAAAAAAAA+Da8+eab2WmnndKwYcNceuml6dSpU5YsWZKZM2fmlltuSbNmzXLQQQet0djvvvtu9txzzxx44IF58MEH07Bhw8yePTvjxo3LJ5988g0/yTdn6dKlKRQKSZKOHTvm4YcfTnl5ed57771MmjQpF198cW6//fZMmjQp9erVWyuZGjVqlEaNGhV/P/XUU+nTp0+GDBmSQw89NPfee2969+6dyZMnZ7vttkuSNGjQoNIlhgAAAAAAAAAAAGtLz549s3jx4tx2221p06ZN/vGPf2TixIl5//3312i8xYsXp0aNGiusP+ecc3LllVdm0KBBufDCC7PJJptk7ty5mTx5cn7+85/nz3/+8xqNCwAAAAAAAAAAVI199tknt956axYvXpzHH388xxxzTBYuXJjrr78+paWl39g8G2200Tc21uduvvnmnHHGGRk+fHi6d++eTz/9NC+99FJeffXVb3yuqlKvXr2UlZUVf3/00UfZa6+9sttuu+W5557LzJkz079//9StWzeDBw9OktSpUyd16tRJzZo1qyo2AAAAAAAAAAAAAACsFV/3bNaPP/447777bnr06JFmzZqtsn3z5s0zb9684u8rrrgi48ePz8MPP1wsW9l+jFdeeSX77rtvBg0alGuvvTZ16tTJrFmzMmbMmJSXl69W5qrw+dmyc+bMKd7Tfvnll6dz585ZvHhxxo8fn/POOy9/+ctfqjoqAAAsV0lVBwAAAAAAAAAAAAAAAIBvw8CBA1O9evVMmTIlvXv3zhZbbJFOnTqlZ8+euf/++3PggQcmST788MMcd9xxady4cerXr5/dd989L774YpJk1KhRufDCC/Piiy+mUCikUChk1KhRefLJJ/PRRx/lpptuylZbbZXWrVtn9913z7Bhw9KiRYtihldffTX77bdfSktL06RJkxx11FFZsGBBsX7XXXfNoEGDcvbZZ2eDDTZIWVlZLrjggkrPccEFF6RFixapVatWmjVrlkGDBhXr/vWvf6Vfv35Zf/31s95662XffffNrFmzivWjRo1Kw4YNc99996VDhw6pVatW3nrrrSRJ9erVU1ZWlmbNmqVTp0455ZRT8thjj+Xll1/O0KFDi2OMHj0622yzTfHywL59++bdd99NksyZMye77bZbkmT99ddPoVDIT37ykyTJo48+mm7duqVhw4Zp1KhRDjjggLzxxhur/LsNGzYse+21V84999y0b98+5557bvbYY48MGzZslX0BAAAAAAAAAAC+TR988EEmT56coUOHZrfddkvLli2z7bbb5txzz83++++fJJk7d24OPvjglJaWpn79+undu3f+8Y9/FMe44IIL0qVLl9xyyy1p06ZNatWqlaOPPjqPPfZYrrnmmuJatTlz5uTpp5/O5ZdfnquuuipXXXVVdtlll7Ru3Trdu3fPeeedlwceeGCl41ZUVKx0jdzn/vSnP2XrrbdO7dq106ZNm1x44YVZsmRJsb5QKOSmm27KoYcemvXWWy/t2rXLuHHjvuW3DQAAAAAAAAAA/51q1aqVsrKyNG/ePH379s2Pf/zjjB07trgG6ItuueWWdOzYMbVq1UrTpk1z8sknr3Dciy66KE2aNMnUqVOTJK1atap0dtPqrAMaN25c2rVrlzp16mS33XbLbbfdlkKhkA8++CDJZ2uNevfunZ/+9Kdp27ZtOnbsmCOOOCJDhgwpjrHrrrvmtNNOqzTuIYcckv79+xd/f/rppzn77LPTvHnz1KpVK+3atcvNN99crH/llVey//77p379+qlXr1522WWXSmdY3Xrrrdliiy1Su3bttG/fPiNGjCjWLVq0KCeffHKaNm2a2rVrp1WrVrnsssuK9Ss712t57rjjjvznP//JqFGjsuWWW+awww7Lz3/+81x11VWpqKhYaV8AAAAAAAAAAAAAAPhvsjpns1511VXp1KlT6tatm+bNm2fgwIH5+OOPkySTJk1KvXr1kiS77757CoVCJk2alCR58skn061bt9SpUyfNmzfPoEGDsnDhwlSrVi1lZWXFT2lpafFu7rKysjRu3DhXXXVVNtlkk9SqVStdunTJ+PHji5knTJiQpk2b5vLLL8+WW26ZTTfdNPvss09uuumm1KxZs9huRfN/rlWrVrn00kszYMCA1KtXLy1atMhvfvObYv2q9jOsyZm1FRUVGThwYAqFQp599tkcfvjh2WyzzdKxY8ecfvrp+dOf/lTsv7L3DgAAVaGkqgMAAAAAAAAAAAAAAADAN+29997LQw89lJNOOil169ZdbptCoZCKiorsv//+mT9/fh544IE8//zz6dq1a/bYY4+8//776dOnTwYPHpyOHTtm3rx5mTdvXvr06ZOysrIsWbIk99577wovyps3b166d++eLl26ZMqUKRk/fnz+8Y9/pHfv3pXa3Xbbbalbt26eeeaZXH755bnooosyYcKEJMmYMWNy9dVX54YbbsisWbMyduzYdOrUqdi3f//+mTJlSsaNG5ennnoqFRUV2W+//bJ48eJim08++SSXXXZZbrrpprzyyitp3LjxCt9b+/bts+++++aPf/xjsWzRokUZMmRIXnzxxYwdOzazZ88uXnjYvHnz3HPPPUmSGTNmZN68ecWLGT/55JOcdtppee655zJx4sSUlJTk0EMPTXl5+QrnT5Knnnoqe++9d6WyHj165Mknn1xpPwAAAAAAAAAAgG9baWlpSktLM3bs2Hz66afL1FdUVOSQQw7J+++/n8ceeywTJkzIG2+8kT59+lRq9/rrr+fuu+/OPffck6lTp2b48OHZYYcdcuyxxxbXqjVv3jy///3vU1pamoEDBy43T6FQWOm4SVa6Ri5JHnzwwRx55JEZNGhQXn311dxwww0ZNWpULrnkkkpjX3jhhendu3deeuml7Lfffvnxj39cHAMAAAAAAAAAAFhzderUqXRu1Oeuv/76nHTSSTnuuOMybdq0jBs3Lm3btl2mXUVFRU499dTcfPPNmTx5crp06bLCuVa2DmjOnDk5/PDDc8ghh2Tq1Kk5/vjjc95551XqX1ZWlqeffjpvvfXW13rmfv365c4778zw4cMzffr0jBw5MqWlpUmSv/3tb+nWrVtq166dRx55JM8//3wGDBiQJUuWJEluvPHGnHfeebnkkksyffr0XHrppfnFL36R2267LUkyfPjwjBs3LnfffXdmzJiR0aNHp1WrVklWfa7X8jz11FPp3r17atWqVSzr0aNH/v73v2fOnDlf6z0AAAAAAAAAAAAAAMC6ZFVnsyZJSUlJhg8fnpdffjm33XZbHnnkkZx99tlJkh133DEzZsxIktxzzz2ZN29edtxxx0ybNi09evTIYYcdlpdeeil33XVXJk+enJNPPnmVma655ppceeWVueKKK/LSSy+lR48eOeiggzJr1qwkn+2FmDdvXv7yl7+scIzVnf/KK6/MNttskxdeeCEDBw7MiSeemNdeey3JyvczrOmZte+//37Gjx+/wnvaGzRosNL3fs4556zy/QEAwLelelUHAAAAAAAAAAAAAAAAgG/a66+/noqKimy++eaVyjfccMP85z//SZKcdNJJ6dGjR6ZNm5Z33323eAneFVdckbFjx2bMmDE57rjjUlpamurVq6esrKw4zvbbb5+f//zn6du3b0444YRsu+222X333dOvX780adIkyWeXHHbt2jWXXnppsd8tt9yS5s2bZ+bMmdlss82SJJ07d87555+fJGnXrl1+/etfZ+LEidlrr70yd+7clJWVZc8990yNGjXSokWLbLvttkmSWbNmZdy4cXniiSey4447JknuuOOONG/ePGPHjk2vXr2SJIsXL86IESPygx/8YLXeXfv27fPQQw8Vfw8YMKD4vU2bNhk+fHi23XbbfPzxxyktLc0GG2yQJGncuHEaNmyY8vLy/Pvf/87++++fsrKylJSUJEluvvnmNG7cOK+++mq23HLLFc4/f/784jv8XJMmTTJ//vzVyg8AAAAAAAAAAPBtqV69ekaNGpVjjz02I0eOTNeuXdO9e/f86Ec/SufOnfPwww/npZdeyuzZs9O8efMkye23356OHTvmueeeyw9/+MMkyaJFi3L77bdno402Ko5ds2bNrLfeepXWqs2cOTNt2rRJ9er/7yjpq666Kv/7v/9b/P23v/2teDHKl8d95JFHVrlG7pJLLsnPfvazHH300Uk+Wyc2ZMiQnH322cW1bUnSv3//HHHEEUmSSy+9NNdee22effbZ7LPPPt/cCwYAAAAAAAAAgO+ZZ599Nr/73e+yxx57LFN38cUXZ/DgwTn11FOLZZ+vQfrckiVL0q9fv0yZMiVPPPFENtlkk5XOt7J1QCNHjszmm2+eX/3qV0mSzTffPC+//HIuueSSYv/zzz8/hx12WFq1apXNNtssO+ywQ/bbb78cfvjhxfOmVmXmzJm5++67M2HChOy5555JPlu39LnrrrsuDRo0yJ133pkaNWokSfHMriQZMmRIrrzyyhx22GFJktatW+fVV1/NDTfckKOPPjpz585Nu3btsvPOO6dQKKRly5bFvis712tF5s+fn1atWlUq+/ycrPnz56d169ar9dwAAAAAAAAAAAAAALCuW9XZrEly2mmnFdu3bt06Q4YMyYknnpgRI0akZs2aady4cZJkgw02KJ7D+qtf/Sp9+/Yt9m3Xrl2GDx+e7t275/rrr0/t2rVXmOmKK67IOeeckx/96EdJkqFDh+bRRx/NsGHDct1116VXr1558MEH071795SVlWX77bfPHnvskX79+qV+/fpfaf799tsvAwcOTJKcc845ufrqqzNp0qS0b99+pfsZ1vTM2meffTYVFRVp3779Kv82K3rvv/jFL1bZFwAAvg2rt/MYAAAAAAAAAAAAAAAA1kGFQqHS72effTZTp05Nx44d8+mnn+b555/Pxx9/nEaNGqW0tLT4mT17dt54442Vjn3JJZdk/vz5GTlyZDp06JCRI0emffv2mTZtWpLk+eefz6OPPlpp3M83pX9x7M8PAfhc06ZN8+677yZJevXqlX//+99p06ZNjj322Nx7771ZsmRJkmT69OmpXr16tttuu2LfRo0aZfPNN8/06dOLZTVr1lxmjpWpqKio9N5eeOGFHHzwwWnZsmXq1auXXXfdNclnFw6uzJw5c/LjH/84bdq0Sf369YuXCa6qX7Ls3+3LmQAAAAAAAAAAAKpKz5498/e//z3jxo1Ljx49MmnSpHTt2jWjRo3K9OnT07x58+KlJ0nSoUOHNGzYsNK6rpYtWxYvPVmVL6+dGjBgQKZOnZobbrghCxcuTEVFxQrHXZ01cs8//3wuuuiiSvXHHnts5s2bl08++aQ41hfXodWtWzf16tUrrnUDAAAAAAAAAABW33333ZfS0tLUrl07O+ywQ7p165Zrr722Upt33303f//737PHHnusdKzTTz89Tz31VB5//PFssskmq5x7ZeuAZsyYkR/+8IeV2m+77baVfjdt2jRPPfVUpk2blkGDBmXx4sU5+uijs88++6S8vHyV8yfJ1KlTU61atXTv3n2F9bvssktq1KixTN0///nPvP322/npT39aac3TxRdfXFwT1b9//0ydOjWbb755Bg0alIceeqjYf2Xneq3M8s7FWl45AAAAAAAAAAAAAAD8t1vZ2axJ8uijj2avvfbKxhtvnHr16qVfv3557733snDhwhWO+fzzz2fUqFGV9gr06NEj5eXlmT179gr7ffTRR/n73/+enXbaqVL5TjvtVDwLtlq1arn11lvzzjvv5PLLL0+zZs1yySWXpGPHjpk3b95Xmv+L+zIKhULKysqK+zJWtp9hTc+s/Sr7F1b03r94viwAAKxNJVUdAAAAAAAAAAAAAAAAAL5pbdu2TaFQyGuvvVapvE2bNmnbtm3q1KmTJCkvL0/Tpk0zderUSp8ZM2bkrLPOWuU8jRo1Sq9evXLllVdm+vTpadasWa644ori2AceeOAyY8+aNSvdunUrjvHlywALhULxwsHmzZtnxowZue6661KnTp0MHDgw3bp1y+LFi4sb3b+soqKi0ub3OnXqfKXL/KZPn57WrVsnSRYuXJi99947paWlGT16dJ577rnce++9SZJFixatdJz+/fvnvffey4033phnnnkmzzzzzGr1Kysry/z58yuVvfvuu2nSpMlqPwMAAAAAAAAAAMC3qXbt2tlrr73yv//7v3nyySfTv3//nH/++cus3/rcl8vr1q27WvO0a9cub7zxRhYvXlwsa9iwYdq2bZuNN954mfZfHnd11siVl5fnwgsvrFQ/bdq0zJo1K7Vr1y6OtbK1bgAAAAAAAAAAwOrbbbfdiut4/vOf/+SPf/xjGjduXKnN5+dkrcpee+2Vv/3tb3nwwQdXq/3K1gEtb/3Tis662nLLLXPSSSfljjvuyIQJEzJhwoQ89thjSZKSkpJl+n1xDdSqnm1l9Z9nvfHGGyuteXr55Zfz9NNPJ0m6du2a2bNnZ8iQIfn3v/+d3r175/DDD0+y8nO9VmRF52IlcTYWAAAAAAAAAAAAAADfSys6m/Wtt97Kfvvtly233DL33HNPnn/++Vx33XVJstK1++Xl5Tn++OMr7RV48cUXM2vWrGy66aarzLO8/RBfLtt4441z1FFH5brrrsurr76a//znPxk5cuRXmn9l+zJWtp9hTc+sbdeuXQqFQqZPn77S51/T9w4AAN+mkqoOAABfNH78+EyePLn4+7rrrkuXLl3St2/f/Otf/6rCZAAAAAAAAAAAAADAuqRRo0bZa6+98utf/zoLFy5cYbuuXbtm/vz5qV69etq2bVvps+GGGyZJatasmaVLl65yzpo1a2bTTTctzte1a9e88soradWq1TJjf3nT+srUqVMnBx10UIYPH55JkyblqaeeyrRp09KhQ4csWbIkzzzzTLHte++9l5kzZ2aLLbZY7fG/6LXXXsv48ePTs2fP4u8FCxbkl7/8ZXbZZZe0b9++eEHgF587SaV39P7772fWrFk577zzsscee2SLLbZY7TXhO+ywQyZMmFCp7KGHHsqOO+64Rs8EAAAAAAAAAADwbevQoUMWLlyYDh06ZO7cuXn77beLda+++mo+/PDDVa7rWt5atSOOOCIff/xxRowYsUa5VmeNXNeuXTNjxoxl6tu2bZuSEkdYAwAAAAAAAADAN61u3bpp27ZtWrZsmRo1aiy3Tb169dKqVatMnDhxpWMddNBB+d3vfpdjjjkmd95559fK1b59+zz33HOVyqZMmbLKfh06dEiS4vlbG220UebNm1esX7p0aV5++eXi706dOqW8vDyPPfbYcsfr3LlzHn/88SxevHiZuiZNmmTjjTfOm2++ucx6p9atWxfb1a9fP3369MmNN96Yu+66K/fcc0/ef//9JCs+12tFdthhh/zlL3/JokWLimUPPfRQmjVrllatWq3y/QAAAAAAAAAAAAAAwH+7z89mnTJlSpYsWZIrr7wy22+/fTbbbLP8/e9/X2X/z+8CX975qJ/fn7089evXT7NmzTJ58uRK5U8++eRKz4Jdf/3107Rp02XuIv+q8y8vz/L2M6zpmbUbbLBBevTokeuuu26597R/+OGHSbLG7x0AAL5NbjoA4DvlrLPOykcffZQkmTZtWgYPHpz99tsvb775Zs4444wqTgcAAAAAAAAAAAAArEtGjBiRJUuWZJtttsldd92V6dOnZ8aMGRk9enRee+21VKtWLXvuuWd22GGHHHLIIXnwwQczZ86cPPnkk/mf//mf4gWBrVq1yuzZszN16tQsWLAgn376ae67774ceeSRue+++zJz5szMmDEjV1xxRR544IEcfPDBSZKTTjop77//fo444og8++yzefPNN/PQQw9lwIABWbp06Wo9w6hRo3LzzTfn5Zdfzptvvpnbb789derUScuWLdOuXbscfPDBOfbYYzN58uS8+OKLOfLII7PxxhsXM6zMkiVLMn/+/Pz973/PtGnTcu2116Z79+7p0qVLzjrrrCRJixYtUrNmzVx77bV58803M27cuAwZMqTSOC1btkyhUMh9992Xf/7zn/n444/TsGHDrL/++rnxxhvz+uuv55FHHlntNeGnnnpqHnrooQwdOjSvvfZahg4dmocffjinnXbaavUHAAAAAAAAAAD4trz33nvZfffdM3r06Lz00kuZPXt2/vCHP+Tyyy/PwQcfnD333DOdO3fOj3/84/z1r3/Ns88+m379+qV79+7ZZpttVjp2q1at8swzz2TOnDlZsGBBysvLs8MOO2Tw4MEZPHhwzjjjjEyePDlvvfVWnn766dx8880pFAopKVnxMdOrs0buf//3f/Pb3/42F1xwQV555ZVMnz49d911V/7nf/7nG313AAAAAAAAAADAV3PBBRfkyiuvzPDhwzNr1qz89a9/zbXXXrtMu0MPPTS33357fvKTn2TMmDFrPN/xxx+f1157Leecc05mzpyZu+++O6NGjUqSFAqFJMmJJ56YIUOG5IknniiuZerXr1822mij7LDDDkmS3XffPffff3/uv//+vPbaaxk4cGA++OCD4jytWrXK0UcfnQEDBmTs2LGZPXt2Jk2alLvvvjtJcvLJJ+ejjz7Kj370o0yZMiWzZs3K7bffnhkzZhTfy2WXXZZrrrkmM2fOzLRp03LrrbfmqquuSpJcffXVufPOO/Paa69l5syZ+cMf/pCysrI0bNhwped6rUjfvn1Tq1at9O/fPy+//HLuvffeXHrppTnjjDOK7wUAAAAAAAAAAAAAAL4PVnU266abbpolS5YU78O+/fbbM3LkyFWOe8455+Spp57KSSedlKlTp2bWrFkZN25cTjnllFX2PeusszJ06NDcddddmTFjRn72s59l6tSpOfXUU5MkN9xwQ0488cQ89NBDeeONN/LKK6/knHPOySuvvJIDDzzwa8//uZXtZ/g6Z9aOGDEiS5cuzbbbbpt77rkns2bNyvTp03PttdfmoIMOSpI1fu8AAPBtWvEtCgBQBWbPnp0OHTokSe65554ccMABufTSSzNixIj8+c9/ruJ0AAAAAAAAAAAAAMC6ZNNNN80LL7yQPffcM+eee25+8IMfZJtttsm1116bM888M0OGDEmhUMgDDzyQbt26ZcCAAdlss83yox/9KHPmzEmTJk2SJD179sw+++yT3XbbLRtttFF+//vfp0OHDllvvfUyePDgdOnSJdtvv33uvvvu3HTTTTnqqKOSJM2aNcsTTzyRpUuXpkePHtlyyy1z6qmnpkGDBikpWb1tPQ0bNsyNN96YnXbaKZ07d87EiRPzpz/9KY0aNUqS3Hrrrdl6661zwAEHZIcddkhFRUUeeOCB1KhRY5Vjv/LKK2natGlatGiRXXfdNXfffXfOPffcPP744yktLU2SbLTRRhk1alT+8Ic/pEOHDvnlL3+ZK664otI4G2+8cS688ML87Gc/S5MmTXLKKaekpKQkI0aMyF//+tdsueWWOf300/OrX/1qtZ55xx13zJ133plbb701nTt3zqhRo3LXXXdlu+22W63+AAAAAAAAAAAA35bS0tJst912ufrqq9OtW7dsueWW+cUvfpFjjz02v/71r1MoFDJ27Nisv/766datW/bcc8+0adMmd9111yrHPvPMM1OtWrV06NAhG220UebOnZskueKKK/K73/0uL7zwQg444IC0a9cuvXr1Snl5eZ566qnUr19/hWOuzhq5Hj165L777suECRPywx/+MNtvv32uuuqqtGzZ8pt5aQAAAAAAAAAAwBo5+uijM2zYsIwYMSIdO3bMAQcckFmzZi237eGHH57bbrstRx11VP74xz+u0XytW7fOmDFj8sc//jGdO3fO9ddfn/POOy9JUqtWrSTJnnvumaeffjq9evXKZpttlp49e6Z27dqZOHFi8WysAQMG5Oijj06/fv3SvXv3tG7dOrvttlulua6//vocfvjhGThwYNq3b59jjz02CxcuTJI0atQojzzySD7++ON07949W2+9dW688cbi2VrHHHNMbrrppowaNSqdOnVK9+7dM2rUqLRu3TrJZ+u8hg4dmm222SY//OEPM2fOnDzwwAMpKSlZ5bley9OgQYNMmDAh77zzTrbZZpsMHDgwZ5xxRs4444w1es8AAAAAAAAAAAAAALCuWtXZrF26dMlVV12VoUOHZsstt8wdd9yRyy67bJXjdu7cOY899lhmzZqVXXbZJVtttVV+8YtfpGnTpqvsO2jQoAwePDiDBw9Op06dMn78+IwbNy7t2rVLkmy77bb5+OOPc8IJJ6Rjx47p3r17nn766YwdOzbdu3f/2vN/8d2saD/D1zmztnXr1vnrX/+a3XbbLYMHD86WW26ZvfbaKxMnTiy+2zV97wAA8G0qVFRUVFR1CAD43AYbbJDJkyenQ4cO2XnnndOvX78cd9xxmTNnTjp06JBPPvmkqiMCFH300Udp0KBBPvzww5VeUAYAAAAAAAAAAADwfVJeXp758+cnScrKylJSUrLcdnPmzEnr1q3zwgsvpEuXLms0V6FQyL333ptDDjlkpe0WLVqUSy+9NEny85//PDVr1lyj+QAAAAAAAAAAAPj+sQatanjvAAAAAAAAAABV75JLLsnIkSPz9ttvV3WUtaJVq1Y57bTTctppp61R/1133TVdunTJsGHDVqu9NTIAAAAAAAAAAAAAAMCaWJ17xFf3rvEV+Sb2PazreyfW9fxf9t/2PABA1fjoo4/SoEGDfPjhh6lfv/4K2321f30CwLds5513zhlnnJEhQ4bk2Wefzf77758kmTlzZjbZZJMqTgcAAAAAAAAAAAAAwDdtxx13zI477viV+pxwwgkpLS39lhIBAAAAAAAAAAAAAAAAAAAAAAB8/4wYMSLPPfdc3nzzzdx+++351a9+laOPPrqqY61V55xzTkpLS/Phhx+udp877rgjpaWlefzxx7/FZAAAAAAAAAAAAAAAAAAAsG6oXtUBAOCLfv3rX2fgwIEZM2ZMrr/++my88cZJkj//+c/ZZ599qjgdAAAAAAAAAAAAAADflE022SSzZs1KktSqVesr9b3oooty5plnJkmaNm36jWcDAAAAAAAAAAAAAAAAAAAAAAD4vpk1a1YuvvjivP/++2nRokUGDx6cc889t6pjrTWPPfZYFi9enCSpV6/eavc76KCDst122yVJGjZs+G1EAwAAAAAAAAAAAAAAAACAdUb1qg4AAF/UokWL3HfffcuUX3311VWQBgAAAAAAAAAAAACANVG9+qq3LVWvXj1t27Zdo/EbN26cxo0br1FfAAAAAAAAAAAAAAAAAAAAAAAAlnX11Vd/r+8Rbtmy5Rr1q1evXurVq/cNpwEAAAAAAAAAAAAAAFix1b1HHAAAqoJ/iQLwnVNeXp7XX3897777bsrLyyvVdevWrYpSAQAAAAAAAAAAAACwOgqFQmrWrFn8DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHx9q3OPuLvGAQCoStWrOgAAfNHTTz+dvn375q233kpFRUWlukKhkKVLl1ZJrqVLl2batGlp2bJl1l9//SrJAAAAAAAAAAAAAACwLli8eHFGjx6dJDnuuOOKm+kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANbc694i7axwAgKpUUtUBAOCLTjjhhGyzzTZ5+eWX8/777+df//pX8fP++++vtRynnXZabr755iTJ0qVL071793Tt2jXNmzfPpEmT1loOAAAAAAAAAAAAAIB10YIFC7JgwYKqjgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/VVbnHnF3jQMAUFWqV3UAAPiiWbNmZcyYMWnbtm2V5hgzZkyOPPLIJMmf/vSnzJ49O6+99lp++9vf5rzzzssTTzxRpfkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC7oqSqAwDAF2233XZ5/fXXqzpGFixYkLKysiTJAw88kF69emWzzTbLT3/600ybNq2K0wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHdH9aoOAABfdMopp2Tw4MGZP39+OnXqlBo1alSq79y581rJ0aRJk7z66qtp2rRpxo8fnxEjRiRJPvnkk1SrVm2tZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHVB9aoOAABf1LNnzyTJgAEDimWFQiEVFRUpFApZunTpWsnxk5/8JL17907Tpk1TKBSy1157JUmeeeaZtG/ffq1kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAdUH1qg4AAF80e/bsqo6QJLngggvSqVOnzJ07N7169UqtWrWSJNWqVcvPfvazKk4HAAAAAAAAAAAAAPDdtuGGG1Z1hGV8FzMBAAAAAAAAAACwbrAGDQAAAAAAAAAA+DZYmwQAAAAAAAAAAAAAAKyJ1dmT8HX3LXwT+x7snQAA+H6qXtUBAOCLWrZsWdURsnjx4uy999654YYb0rNnz0p1Rx99dBWlAgAAAAAAAAAAAABYN9SoUSNHHnlk8ft3wXcxEwAAAAAAAAAAAOsGa9AAAAAAAAAAAIBvg7VJAAAAAAAAAAAAAADAmlidPQlfd9/CN7Hvwd4JAIDvr+pVHQAAvuyNN97IsGHDMn369BQKhWyxxRY59dRTs+mmm66V+WvUqJGXX345hUJhrcwHAAAAAAAAAAAAAPDfpFAopGHDhlUdo5KKioosWrSo+N16cQAAAAAAAAAAAFbXd3FdHAAAAAAAAAAAsO6zNgkAAAAAAAAAAAAAAFgTq7Mn4eve6/1N3AvubnEAgO+vkqoOAABf9OCDD6ZDhw559tln07lz52y55ZZ55pln0rFjx0yYMGGt5ejXr19uvvnmtTYfAAAAAAAAAAAAAADfriVLlmTJkiXf6JiTJk1KoVBIoVDIIYcc8pX67rrrrsW+U6dO/UZzAQAAAAAAAAAA8O36fP3Xqi6l+bILLrig2HfYsGHfSjYAAAAAAAAAAODb9fn5Ux988MFam7N///7FtUdjx45d7X5z5swp9uvSpcu3lg8AAAAAAAAAAAAAAPju+br3en8T94J/PsbX2eOwpvsqAACoOiVVHQAAvuhnP/tZTj/99DzzzDO56qqrcvXVV+eZZ57JaaedlnPOOWet5Vi0aFGuv/76bL311jn++ONzxhlnVPoAAAAAAAAAAAAAAN9PX9xQXaNGjbRp0yZnnnlmFi5cWNXR1sijjz6a3XbbLRtssEHWW2+9tGvXLkcfffTX3ry+Nnz5b9GkSZPstddeueWWW1JeXv6Vxho1alQaNmy4xllmzJiRUaNGVSobMWJEWrdundq1a2frrbfO448/Xqn+j3/8Y5599tk1nhMAAAAAAAAAAICVmz9/fk499dS0bds2tWvXTpMmTbLzzjtn5MiR+eSTT1ZrjAsuuGCFl7fceuutmTlzZqWyxx57LFtvvXVq166dNm3aZOTIkZXqzzzzzMybNy+bbLLJGj0TAAAAAAAAAACwdnwXzxzbZ599Mm/evOy7777Fsn/961856qij0qBBgzRo0CBHHXVUPvjgg2J98+bNM2/evAwePLgKEgMAAAAAAAAAAAAAwNr1bZ5H+sILL+SAAw5I48aNU7t27bRq1Sp9+vTJggULvuGn+OZdeOGFxX0S1atXz4Ybbphu3bpl2LBh+fTTT7/SWJMmTUqhUKi0f+GrePjhhzNx4sRKZffcc086dOiQWrVqpUOHDrn33nsr1V9zzTWZN2/eGs0HAEDVqF7VAQDgi6ZPn5677757mfIBAwZk2LBhay3Hyy+/nK5duybJMpfeFAqFtZYDAAAAAAAAAAAAAPju2WeffXLrrbdm8eLFefzxx3PMMcdk4cKFuf766yu1W7x4cWrUqFFFKVftlVdeyb777ptBgwbl2muvTZ06dTJr1qyMGTMm5eXlVR1vhb74Xj//WyxdujT/+Mc/Mn78+Jx66qkZM2ZMxo0bl+rV1872qcaNG6dhw4bF33fddVdOO+20jBgxIjvttFNuuOGG7Lvvvnn11VfTokWLJMkGG2yQjz76aK3kAwAAAAAAAAAA+L558803s9NOO6Vhw4a59NJL06lTpyxZsiQzZ87MLbfckmbNmuWggw76WnM0bNgwjRs3Lv6ePXt29ttvvxx77LEZPXp0nnjiiQwcODAbbbRRevbsmSQpLS1NaWlpqlWr9rXmBgAAAAAAAAAAvn0rOnOsT58+VZKnVq1aKSsrq1TWt2/fvPPOOxk/fnyS5LjjjstRRx2VP/3pT0mSatWqpaysLKWlpWs9LwAAAAAAAAAAAAAArE3f5nmk7777bvbcc88ceOCBefDBB9OwYcPMnj0748aNyyeffPINP8k3Z+nSpSkUCkmSjh075uGHH055eXnee++9TJo0KRdffHFuv/32TJo0KfXq1VsrmRo1apRGjRoVfz/11FPp06dPhgwZkkMPPTT33ntvevfuncmTJ2e77bZLkjRo0CANGjRYK/kAAPhmlFR1AAD4oo022ihTp05dpnzq1KmVLp/5tj366KMr/DzyyCNrLQcAAAAAAAAAAAAA8N3z+UV1zZs3T9++ffPjH/84Y8eOzQUXXJAuXbrklltuSZs2bVKrVq1UVFRk7ty5Ofjgg1NaWpr69eund+/e+cc//lFpzHHjxmWbbbZJ7dq1s+GGG+awww4r1i1atChnn312Nt5449StWzfbbbddJk2aVKx/6623cuCBB2b99ddP3bp107FjxzzwwANJkn/961/58Y9/nI022ih16tRJu3btcuuttyZJJkyYkKZNm+byyy/PlltumU033TT77LNPbrrpptSsWbM4/pNPPplu3bqlTp06ad68eQYNGpSFCxcW61u1apVLL700AwYMSL169dKiRYv85je/qZT/5JNPTtOmTVO7du20atUql112WbF+Ve9nRe/1i3+LjTfeOF27ds3Pf/7z/N///V/+/Oc/Z9SoUcUxrr766uyxxx5p27ZtWrZsmYEDB+bjjz9OkkyaNCk/+clP8uGHH6ZQKKRQKOSCCy5IkowePTrbbLNN6tWrl7KysvTt2zfvvvvuKv8bueqqq/LTn/40xxxzTLbYYosMGzYszZs3z/XXX7/KvgAAAAAAAAAAAHx9AwcOTPXq1TNlypT07t07W2yxRTp16pSePXvm/vvvz4EHHpgk+fDDD3PcccelcePGqV+/fnbfffe8+OKLSZJRo0blwgsvzIsvvlhcX/bFtWlfNnLkyLRo0SLDhg3LFltskWOOOSYDBgzIFVdcsTYeGQAAAAAAAAAA+Iat6MyxL3vvvfdyxBFHZJNNNsl6662XTp065fe//32lNuXl5Rk6dGjatm2bWrVqpUWLFrnkkkuK9X/729/Sp0+frL/++mnUqFEOPvjgzJkzZ6X5pk+fnvHjx+emm27KDjvskB122CE33nhj7rvvvsyYMeObeAUAAAAAAAAAAAAAALDO+DbPI33yySfz0Ucf5aabbspWW22V1q1bZ/fdd8+wYcPSokWLYoZXX301++23X0pLS9OkSZMcddRRWbBgQbF+1113zaBBg3L22Wdngw02SFlZWfE+7c9dcMEFadGiRWrVqpVmzZpl0KBBxbp//etf6devX9Zff/2st9562XfffTNr1qxi/ahRo9KwYcPcd9992XLLLdO6deu88847SZLq1aunrKwszZo1S6dOnXLKKafksccey8svv5yhQ4cWx/j8Xu8GDRqkS5cuOemkk4r3es+ZMye77bZbkmT99ddPoVBI//79kyTjx4/PzjvvnIYNG6ZRo0Y54IAD8sYbb6zy7zZs2LDstddeOffcc9O+ffuce+652WOPPTJs2LBV9gUA4LurpKoDAMAXHXvssTnuuOMydOjQPP7445k8eXJ++ctf5vjjj89xxx231vO8/vrrefDBB/Pvf/87SVJRUbHWMwAAAAAAAAAAAAAA32116tTJ4sWLk3y2Bvnuu+/OPffck6lTpyZJDjnkkLz//vt57LHHMmHChLzxxhvp06dPsf/999+fww47LPvvv39eeOGFTJw4Mdtss02x/ic/+UmeeOKJ3HnnnXnppZfSq1ev7LPPPsUN7CeddFI+/fTT/OUvf8m0adMydOjQlJaWJkl+8Ytf5NVXX82f//znTJ8+Pddff3023HDDJElZWVnmzZuXv/zlLyt8tmnTpqVHjx457LDD8tJLL+Wuu+7K5MmTc/LJJ1dqd+WVV2abbbbJCy+8kIEDB+bEE0/Ma6+9liQZPnx4xo0bl7vvvjszZszI6NGj06pVqySfrdFe1ftZ0Xtdkd133z0/+MEP8sc//rFYVlJSkosuuiiPPPJIbr311jzyyCM5++yzkyQ77rhjhg0blvr162fevHmZN29ezjzzzCTJokWLMmTIkLz44osZO3ZsZs+eXdy4vyKLFi3K888/n7333rtS+d57750nn3xypX0BAAAAAAAAAAD4+t5777089NBDOemkk1K3bt3ltikUCqmoqMj++++f+fPn54EHHsjzzz+frl27Zo899sj777+fPn36ZPDgwenYsWNxfdmX17d90VNPPbXM2rEePXpkypQpxXWGAAAAAAAAAADAuuuLZ4590X/+859svfXWue+++/Lyyy/nuOOOy1FHHZVnnnmm2Obcc8/N0KFDi2eD/e53v0uTJk2SJJ988kl22223lJaW5i9/+UsmT56c0tLS7LPPPlm0aNEK8zz11FNp0KBBtttuu2LZ9ttvnwYNGjjzCgAAAAAAAAAAAACA75Vv+zzSsrKyLFmyJPfee28qKiqWO/68efPSvXv3dOnSJVOmTMn48ePzj3/8I717967U7rbbbkvdunXzzDPP5PLLL89FF12UCRMmJEnGjBmTq6++OjfccENmzZqVsWPHplOnTsW+/fv3z5QpUzJu3Lg89dRTqaioyH777Vdpv8Mnn3ySyy67LL/5zW/yyCOPFO80X5727dtn3333rXQf+Of3er/wwgu5+eabM3fu3PzkJz9JkjRv3jz33HNPkmTGjBmZN29errnmmiTJwoULc8YZZ+S5557LxIkTU1JSkp49e6a8vHyF8ycrPtPV3ggAgHVb9aoOAABf9Itf/CL16tXLlVdemXPPPTdJ0qxZs1xwwQUZNGjQWsvx3nvvpXfv3nn00UdTKBQya9astGnTJsccc0waNmyYK6+8cq1lAQAAAAAAAAAAAAC+u5599tn87ne/yx577JHks03gt99+ezbaaKMkyYQJE/LSSy9l9uzZad68eZLk9ttvT8eOHfPcc8/lhz/8YS655JL86Ec/yoUXXlgc9wc/+EGS5I033sjvf//7vPPOO2nWrFmS5Mwzz8z48eNz66235tJLL83cuXPTs2fP4ob3Nm3aFMeZO3duttpqq2yzzTZJklatWhXrevXqlQcffDDdu3dPWVlZtt9+++yxxx7p169f6tevnyT51a9+lb59++a0005LkrRr1y7Dhw9P9+7dc/3116d27dpJkv322y8DBw5Mkpxzzjm5+uqrM2nSpLRv3z5z585Nu3btsvPOO6dQKKRly5bFDA8//PAq38/y3uuqtG/fPi+99FLx96mnnpr58+cnScrKyjJkyJCceOKJGTFiRGrWrJkGDRqkUCikrKys0jgDBgwofm/Tpk2GDx+ebbfdNh9//HFKS0uXO/eCBQuydOnS4gWIn2vSpEkxAwAAAAAAAAAAAN+e119/PRUVFdl8880rlW+44Yb5z3/+kyQ56aST0qNHj0ybNi3vvvtuatWqlSS54oorMnbs2IwZMybHHXdcSktLU7169WXWly3P/Pnzl7t2bMmSJVmwYEGaNm36DT0hAAAAAAAAAACwtn35zLEv2njjjXPmmWcWf59yyikZP358/vCHP2S77bbL//f//X+55ppr8utf/zpHH310kmTTTTfNzjvvnCS58847U1JSkptuuimFQiFJcuutt6Zhw4aZNGlS9t577+Vmmj9/fho3brxMeePGjZ15BQAAAAAAAAAAAADA98q3fR7p9ttvn5///Ofp27dvTjjhhGy77bbZfffd069fv+J5pNdff326du2aSy+9tNjvlltuSfPmzTNz5sxsttlmSZLOnTvn/PPPT/LZneG//vWvM3HixOy1116ZO3duysrKsueee6ZGjRpp0aJFtt122yTJrFmzMm7cuDzxxBPZcccdkyR33HFHmjdvnrFjx6ZXr15JksWLF2fEiBHp1KnTau0vaN++fR566KHi78/v9S4vL896662XIUOGZP/99y/e673BBhsk+Wz/QsOGDYv9evbsWWncm2++OY0bN87MmTPTvn37Fc6/ojNd7Y0AAFi3lVR1AAD4okKhkNNPPz3vvPNOPvzww3z44Yd55513cuqppxYPelgdH3zwQR566KGMHj06v/3tbyt9Vsfpp5+eGjVqZO7cuVlvvfWK5X369Mn48eO/8nMBAAAAAAAAAAAAAP897rvvvpSWlqZ27drZYYcd0q1bt1x77bVJkpYtW2ajjTYqtp0+fXqaN2+e5s2bF8s6dOiQhg0bZvr06UmSqVOnLvfivST561//moqKimy22WYpLS0tfh577LG88cYbSZJBgwbl4osvzk477ZTzzz8/L730UrH/iSeemDvvvDNdunTJ2WefnSeffLJYV61atdx666155513cvnll6dZs2a55JJL0rFjx8ybNy9J8vzzz2fUqFGV5u7Ro0fKy8sze/bs4lidO3cufi8UCikrK8u7776bJOnfv3+mTp2azTffPIMGDaq0aX513s/y3uuqVFRUVFqD/uijj+ZHP/pRtt566zRo0CD9+vXLe++9l4ULF650nBdeeCEHH3xwWrZsmXr16mXXXXdNksydO3eVGb68Bv7LmQAAAAAAAAAAAPh2fXnN1rPPPpupU6emY8eO+fTTT/P888/n448/TqNGjSqtk5s9e3Zxjd7XnbOiomK55QAAAAAAAAAAwHffys4c+6KlS5fmkksuSefOnYvrkR566KHieVXTp0/Pp59+usLzxp5//vm8/vrrqVevXnEd0wYbbJD//Oc/q1zLtLy1Sc68AgAAAAAAAAAAAADg++rbPI/0kksuyfz58zNy5Mh06NAhI0eOTPv27TNt2rQkn+0PePTRRyuN2759+ySpNPYX7wNPkqZNmxbvA+/Vq1f+/e9/p02bNjn22GNz7733ZsmSJUk+259QvXr1bLfddsW+jRo1yuabb17pPvCaNWsuM8fKfHkfwuf3erdu3TqbbbZZDj/88CSrvtf7jTfeSN++fdOmTZvUr18/rVu3TpL87W9/W2UG94EDAPz3qV7VAQBgRerVq7dG/f70pz/lxz/+cRYuXJh69epV+p8XhUIh/fr1W+UYDz30UB588MFssskmlcrbtWuXt956a41yAQAAAAAAAAAAAAD/HXbbbbdcf/31qVGjRpo1a5YaNWoU6+rWrVup7Yo2ZH+xvE6dOiucq7y8PNWqVcvzzz+fatWqVaorLS1NkhxzzDHp0aNH7r///jz00EO57LLLcuWVV+aUU07Jvvvum7feeiv3339/Hn744eyxxx456aSTcsUVVxTH2XjjjXPUUUflqKOOysUXX5zNNtssI0eOzIUXXpjy8vIcf/zxGTRo0DLZWrRoUfz+xXeQfLZ2u7y8PEnStWvXzJ49O3/+85/z8MMPp3fv3tlzzz0zZsyY1Xo/ybLvdVWmT59e3Ej/1ltv5YADDsiRRx6Zs846K+3atcuTTz6Zn/70p1m8ePEKx1i4cGH23nvv7L333hk9enQ22mijzJ07Nz169MiiRYtW2G/DDTdMtWrVMn/+/Erl7777bpo0afKVngMAAAAAAAAAAICvrm3btikUCnnttdcqlbdp0ybJ/1u3V15enqZNm2bSpEnLjNGwYcOvPG9ZWdly145Vr149jRo1+srjAQAAAAAAAAAAVWtFZ469+uqrldpdeeWVufrqqzNs2LB06tQpdevWzWmnnVY8r2plZ40ln61l2nrrrXPHHXcsU7fRRhutsF9ZWVn+8Y9/LFP+z3/+05lXAAAAAAAAAAAAAAB8r6yt80gbNWqUXr16pVevXrnsssuy1VZb5Yorrshtt92W8vLyHHjggRk6dOgy/Zo2bVr8vrL7wJs3b54ZM2ZkwoQJefjhhzNw4MD86le/ymOPPZaKiorlZvryfeB16tRJoVBYYfsv++J94F+81/u3v/1tCoVC/va3v6Vv374rvdc7SQ488MA0b948N954Y5o1a5by8vJsueWWK71HPFnxma72RgAArNuqV3UAAOjatWsmTpyY9ddfP1tttVWl/4HyZX/9619XOd7gwYMzYMCAXHrppVlvvfXWKNPChQuX23fBggWpVavWGo0JAAAAAAAAAAAAAPx3qFu3btq2bbtabTt06JC5c+fm7bffTvPmzZN8dsHehx9+mC222CJJ0rlz50ycODE/+clPlum/1VZbZenSpXn33Xezyy67rHCe5s2b54QTTsgJJ5yQc889NzfeeGNOOeWUJJ9dste/f//0798/u+yyS84666xcccUVyx1n/fXXT9OmTbNw4cIkn633fuWVV1b7eVekfv366dOnT/r06ZPDDz88++yzT95///3Vej9f1SOPPJJp06bl9NNPT5JMmTIlS5Ysyfnnn5+SkpKUlZVlzJgxlfrUrFkzS5curVT22muvZcGCBfnlL39ZzDZlypRVzl/z/2fvzoOtqu70cb8HLsNlHgQvM8rggAwikaARUFQQDSIah6iAE1+UFokiRG0FJwyJCKKt0SRC1ESME62G2CJGI5o2aMQRDbEhxBbiEAU1jQz3/v5IeX4SRRGRK/o8Vadq773W+qx370sVp06ds1b16tljjz0yd+7cHHbYYcXrc+fOzaGHHrpZ9wQAAAAAAAAAAMCma9y4cQ444IBcffXVOf3001O7du2P7de9e/esWLEiJSUladu27cf2+bjvl21Mr169cs8992xw7f7770+PHj0+sgkOAAAAAAAAAADw5bepa4498sgjOfTQQ3PcccclScrLy7N48eLiWlodOnRIaWlp5s2bl5NPPvkj47t3755bb701TZs2Tb169TY5X69evbJy5cr84Q9/yJ577pkkefzxx7Ny5crstddem1wHAAAAAAAAAAAAAAC2dZWxHmn16tXTrl27DfYDv+OOO9K2bduUlJRs9r2UlpZm0KBBGTRoUEaNGpWdd945zz77bHbdddesW7cujz/+ePF3A2+++Wb+9Kc/bfZ+4C+++GLuu+++nHPOOcXzD/b1btGiRVasWJGnn376I/edZINn9Oabb2bRokW57rrrinuxz58/f5My9OrVK3Pnzi3uSZ78c01Xv40AANi2bf47YgDYQg499NDUqFGjeFwoFD5Xvf/93//N6NGjU6tWrc2u0bt379x44425+OKLkySFQiHl5eX50Y9+lH333fdz5QMAAAAAAAAAAAAAvj7233//dOnSJccee2ymTZuWdevW5bTTTkufPn3So0ePJMmECRPSr1+/tGvXLkcffXTWrVuX3/zmNxk3blw6duyYY489NkOHDs2UKVOy++6754033siDDz6Yzp07Z+DAgRkzZkwOOuigdOzYMW+99VYefPDB4g/bL7jgguyxxx7p1KlT3n///dx7773Ftuuuuy4LFy7MYYcdlnbt2mX16tW58cYb8/zzz+eqq65KkowfPz7f/OY3M2rUqJxyyimpXbt2Fi1alLlz5xb7fJqpU6emWbNm6datW6pUqZLbbrstZWVladCgwSY9n0/y/vvvZ8WKFVm/fn3+9re/5b777stll12WQw45JEOHDk2StGvXLuvWrcsNN9yQAw44IHPnzs2Pf/zjDeq0bds27777bubNm5euXbumVq1aad26dapXr56rrroqI0eOzHPPPVf8jvmnOfPMM3P88cenR48e6dWrV66//vosW7YsI0eO3KTxAAAAAAAAAAAAfD7XXHNN9t577/To0SMTJ05Mly5dUqVKlSxYsCAvvvhi9thjj+y///7p1atXBg8enMmTJ2ennXbKq6++mjlz5mTw4MHp0aNH2rZtmyVLlmThwoVp2bJl6tatW1xH9V+NHDkyV199dc4888yccsop+f3vf5+f/exnueWWW7by3QMAAAAAAAAAAFtT+/btc8cdd+Sxxx5Lw4YNc8UVV2TFihXFNb9q1qyZ8ePHZ9y4calevXr23nvvvP7663n++edz0kkn5dhjj82PfvSjHHroobnooovSsmXLLFu2LHfeeWfOPvvstGzZ8mPn3WWXXTJgwICccsopue6665IkI0aMyCGHHJKddtppq90/AAAAAAAAAAAAAAB8GXyR65HOnTs3s2bNytFHH52OHTumoqIi99xzT+bMmZMZM2YkSUaNGpWf/OQnOeaYY3L22Wdnu+22y5///OfMmjUrP/nJT1K1atVPvYeZM2dm/fr16dmzZ2rVqpWbbroppaWladOmTRo3bpxDDz20+DuCunXr5vvf/35atGiRQw899FNrr1u3LitWrEh5eXnefPPNPPTQQ7nkkkvSrVu3nH322Umywb7eI0aMyPz58zNt2rQN6rRp0yaFQiH33ntvBg4cmNLS0jRs2DCNGzfO9ddfn2bNmmXZsmX5/ve/v0l/tzPOOCO9e/fO5MmTc+ihh+Y///M/88ADD2T+/PmbNB4AgC+nksoOAAATJkwoHk+cOPFz1+vfv3+eeOKJ7Ljjjptd40c/+lH69u2bJ554ImvWrMm4cePy/PPP5+9//3seffTRz50RAAAAAAAAAAAAAPh6KBQKmT17dk4//fT07t07VapUyYABA3LVVVcV+/Tt2ze33XZbLr744vzgBz9IvXr10rt372L7jBkzcskll+Sss87K//7v/6Zx48bp1atXBg4cmCRZv359Ro0alVdeeSX16tXLgAEDMnXq1CRJ9erVc84552Tp0qUpLS3NPvvsk1mzZiVJ9txzz8yfPz8jR47Mq6++mjp16qRTp06ZPXt2+vTpkyTp0qVLHn744Zx33nnZZ599UlFRkXbt2uWoo47a5GdQp06dTJ48OYsXL07VqlXzjW98I3PmzEmVKlWS5FOfzye577770qxZs5SUlKRhw4bp2rVrpk+fnmHDhhXrd+vWLVOmTMkPf/jDXHbZZendu3cuu+yyDB06tFhnr732ysiRI3PUUUflzTffzIQJEzJx4sTMnDkz5557bqZPn57u3bvn8ssvz6BBgz411wd1Lrrooixfvjy77bZb5syZkzZt2mzycwMAAAAAAAAAAGDztWvXLk899VQmTZqUc845J6+88kpq1KiRXXfdNWPHjs1pp52WQqGQOXPm5LzzzsuJJ56Y119/PWVlZendu3e23377JMnhhx+eO++8M/vuu2/efvvtzJgxI8OHD//YOXfYYYfMmTMn3/ve9/If//Efad68eaZPn57DDz98K945AAAAAAAAAACwtZ1//vlZsmRJ+vfvn1q1amXEiBEZPHhwVq5cuUGfkpKSXHDBBXn11VfTrFmzjBw5MklSq1at/O53v8v48eMzZMiQvPPOO2nRokX69euXevXqfeLcv/jFLzJ69OgceOCBSZJBgwbl6quv/uJuFgAAAAAAAAAAAAAAvqS+yPVIe/funVq1auWss87KX//619SoUSMdOnTIT3/60xx//PFJkubNm+fRRx/N+PHj079//7z//vtp06ZNBgwYUNxv+9M0aNAgP/jBD3LmmWdm/fr16dy5c+655540btw4yT/3Oz/jjDNyyCGHZM2aNendu3fmzJmTatWqfWrt559/Ps2aNUvVqlVTv3797LrrrjnnnHNy6qmnpkaNGkmSJk2abLCv92677Zbzzz8/J5xwQrFOixYtcuGFF+b73/9+TjjhhAwdOjQzZ87MrFmzMnr06Oy2227ZaaedMn369PTt2/dTc+21116ZNWtW/v3f/z3nn39+2rVrl1tvvTU9e/bcpGcGAMCXU6GioqKiskMAwAd23HHHLFiwoPghywfefvvtdO/ePf/zP//zsePuvvvu4vHrr7+eiy66KCeccEI6d+78kQ9kBg0atElZVqxYkWuvvTZPPvlkysvL071794waNSrNmjX7jHcFfFWtWrUq9evXz8qVKz918RkAAAAAAAAAAAAAKk95eXlWrFiRJCkrK9vkhQU+zUMPPZR99903b731Vho0aPCZxy9dujQ77LBDnnrqqXTr1m2LZAIAAAAAAAAAAOCLVygUctddd2Xw4MGbNb5t27YZM2ZMxowZs0VzfZWsWbMmkyZNSpKce+65qV69eiUnAgAAAAAAAACAyjN8+PC8/fbbmT179maNnzhxYmbPnp2FCxdu0VwAAAAAAAAAAAAAAMCX0+fd13tL7Av+4RqrV69Ou3btPtd+3p93TdjP6qu2PupX7X4AgMqxatWq1K9fPytXrky9evU22q9kK2YCgE+1dOnSrF+//iPX33///bzyyisbHfdxH0JcdNFFH7lWKBQ+tv7HKSsry4UXXrhJfQEAAAAAAAAAAAAA+Ppq2bJlvv3tb+eWW27Z5DEHHXRQfve7332BqQAAAAAAAAAAAPgiHXPMMWncuPEnrpn6ryZNmpRJkyblH//4xxeYDAAAAAAAAAAA+Cq69957U6dOncyaNSuHHHLIJo1ZtmxZdt1116xZsya77rrrF5wQAAAAAAAAAAAAAADgk+21117p1q1bHnvssU0eM3LkyNx8881fYCoAALa0ksoOAABJcvfddxeP/+u//iv169cvnq9fvz7z5s3LDjvssNHx5eXlnzvDM888s8l9u3Tp8rnnAwAAAAAAAAAAAABg29azZ88sXrw4SVKnTp3PNPanP/1p/u///i9J0rp16y2eDQAAAAAAAAAAgC/OB98dq1q16mcaN3LkyBx55JFJkiZNmmzxXAAAAAAAAAAAwFfTD3/4w/z7v/97kqRZs2abPK558+ZZuHBhkqRGjRpfRDQAAAAAAAAAAAAAAIBP1bJly+Karp/1Nw4XXXRRxo4dm+Sz/a4CAIDKU1LZAQAgSQYPHpwkKRQKGTZs2AZt1apVS9u2bTNlypRNqnXjjTfmqKOO+sgHG2vWrMmsWbMydOjQjx3XrVu3FAqFVFRUfGL9QqGQ9evXb1IWAAAAAAAAAAAAAAC+HEpKtvxPqUpLS9O+ffvNGtuiRYstnAYAAAAAAAAAAICtZXO/O9aoUaM0atRoC6cBAAAAAAAAAAC+6po2bZqmTZt+5nElJSWb/X0nAAAAAAAAAAAAAABg2/Z59/XeEvuCf1Dj8/zGYXN/VwEAQOX5/O8kAWALKC8vT5LssMMOWbBgQbbbbrvNrnXCCSdkwIABH/mQ4p133skJJ5yQoUOHfuy4JUuWbPacAAAAAAAAAAAAAAB8eRUKhVSvXr14DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9Fn3df7y2xL7i9xQEAvr5KKjsAAHzYkiVLPneNioqKj/2A45VXXkn9+vU3Oq5Nmzafe24AAAAAAAAAAAAAAL581q5dm5tvvjlJMmLEiOKP6wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCr5PPu670l9gW3tzgAwNdXSWUHAIDp06dnxIgRqVmzZqZPn/6JfUePHr3Rtt133z2FQiGFQiH9+vVLScn//9/c+vXrs2TJkgwYMGCj4+++++5Nzjxo0KBN7gsAAAAAAAAAAAAAQOV74403KjsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfOE+777eW2JfcHuLAwB8PZVUdgAAmDp1ao499tjUrFkzU6dO3Wi/QqGQ0aNHb7R98ODBSZKFCxemf//+qVOnTrGtevXqadu2bQ4//PBPHf/h+SoqKjY4/8D69es3WgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL5OSio7AAAsWbLkY48/qwkTJiRJ2rZtm6OOOio1a9b8TOPLy8uLxw888EDGjx+fSZMmpVevXikUCnnsscfy7//+75k0adJmZwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK+aksoOAACfZP369Xn22WfTpk2bNGzYcJPGDBs27HPPO2bMmPz4xz/Ot771reK1/v37p1atWhkxYkQWLVr0uecAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICvgiqVHQAAPmzMmDH52c9+liRZv359evfune7du6dVq1Z56KGHNjquUaNGeeONN5IkDRs2TKNGjTb62hQvv/xy6tev/5Hr9evXz9KlSz/zfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFdVSWUHAIAPu/3223PcccclSe65554sXbo0L774Ym688cacd955efTRRz923NSpU1O3bt0kybRp0z53jm984xsZM2ZMbr755jRr1ixJsmLFipx11lnZc889P3d9AAAAAAAAAAAAAAC2ru22266yIwAAAAAAAAAAAACfge/+AQAAAAAAAAAAAAAAAAAAAAAAAADA5vm8a3tuibVBrS8KAPD1VFLZAQDgw954442UlZUlSebMmZPvfOc76dixY0466aRMnz59o+OGDRtWPL7//vvTp0+f9O3bNx07dtysHDfccEMOO+ywtGnTJq1bt06SLFu2LB07dszs2bM3qyYAAAAAAAAAAAAAAJWjWrVqOe6444rHAAAAAAAAAAAAwJeb7/4BAAAAAAAAAAAAAAAAAAAAAAAAAMDm+bxre26JtUGtLwoA8PVVUtkBAODDtt9++7zwwgtp1qxZ7rvvvlxzzTVJkn/84x+pWrXqJtWoW7durrjiiowcOTJlZWXp06dP+vTpk759+2bnnXfepBrt27fPM888k7lz5+bFF19MRUVFdt111+y///4pFAqbfX8AAAAAAAAAAAAAAGx9hUIhDRo0qOwYAAAAAAAAAAAAwCby3T8AAAAAAAAAAAAAAAAAAAAAAAAAANg8n3dtz4qKiqxZs6Z4XCgUKqUGAADbpiqVHQAAPuyEE07IkUcemd122y2FQiEHHHBAkuTxxx/PzjvvvEk1fvzjH+fFF1/Mq6++miuuuCL169fPlVdemU6dOqVZs2abnKVQKOTAAw/M6NGjc8YZZ+SAAw7woQkAAAAAAAAAAAAAwJdI27ZtM23atE/sM3HixHTr1m2r5PmsVqxYkQMOOCC1a9f+XIsOAAAAAAAAAAAAwJfVZ/0eX6FQyOzZszfa3rZt2xQKhRQKhbz99tubXHfmzJnFcWPGjNnkcQAAAAAAAAAAAAAAAAAAAAAAAAAA8HW0bt26rFu3rtJrfJKHHnqouObo4MGDP9PYvn37FscuXLjwC8kHAPB1VaWyAwDAh02cODE//elPM2LEiDz66KOpUaNGkqRq1ar5/ve//5lq1a1bNw0bNkzDhg3ToEGDlJSUpKysbJPHz5s3L+eee25OPvnknHjiiRu8AAAAAAAAAAAAAAC+Tj74sffGXsOHD6+UXAsWLMiIESM2yDl79uwN+owdOzbz5s3b4nNfd9116dq1a2rXrp0GDRpk9913z+TJkz9TjalTp2b58uVZuHBh/vSnP23xjAAAAAAAAAAAALA1DB8+vPidwmrVqmXHHXfM2LFj8957730h3+O76KKLsnz58tSvX7947dlnn02fPn1SWlqaFi1a5KKLLkpFRUWx/aijjsry5cvTq1evLZoFAAAAAAAAAAAAAAAAAAAAAAAAAICt55PWwdwW/fa3v82+++6bRo0apVatWunQoUOGDRuWdevWVXa0T/Wvf4vtt98+BxxwQG644YaUl5d/plozZ85MgwYNNjvLSy+9lJkzZ25w7ZprrskOO+yQmjVrZo899sgjjzyyQfudd96ZP/zhD5s9JwAAG1dS2QEA4F8dccQRH7k2bNiwTR4/fvz4PPzww3n66aez2267pXfv3jnnnHPSu3fvTf5Q48ILL8xFF12UHj16pFmzZikUCps8PwAAAAAAAAAAAADAV83y5cuLx7feemsuuOCCvPTSS8VrpaWlG/Rfu3ZtqlWr9oXnatKkyaf2qVOnTurUqbNF5/3Zz36WM888M9OnT0+fPn3y/vvv55lnnskLL7zwmeq8/PLL2WOPPdKhQ4ctmg8AAAAAAAAAAAC2tgEDBmTGjBlZu3ZtHnnkkZx88sl57733cu21127x7/HVrVs3ZWVlxfNVq1blgAMOyL777psFCxbkT3/6U4YPH57atWvnrLPOSvLP7zqWlpamevXqWzQLAAAAAAAAAAAAAAAAAAAAAAAAAABb1yetg/lhW2uv7c31/PPP56CDDsro0aNz1VVXpbS0NIsXL87tt9+e8vLyyo63UR9+rh/8LdavX5+//e1vue+++3LGGWfk9ttvz+zZs7dapqZNm6ZBgwbF81tvvTVjxozJNddck7333jvXXXddDjrooLzwwgtp3bp1kqRRo0ZZtWrVVssIAPB1UqWyAwDAv5o3b17OPffcnHzyyTnxxBM3eG2KH/3oR1myZEkmTJiQG2+8MVOmTMmgQYM2+EDi0/z4xz/OzJkz8/jjj2f27Nm56667NngBAAAAAAAAAAAAAHydlJWVFV/169dPoVAonq9evToNGjTIr371q/Tt2zc1a9bMzTffnDfffDPHHHNMWrZsmVq1aqVz58655ZZbNqjbt2/fjB49OuPGjUujRo1SVlaWiRMnbtBn4sSJad26dWrUqJHmzZtn9OjRxba2bdtm2rRpxeMkOeyww1IoFIrnEydOTLdu3YpjysvLc9FFF6Vly5apUaNGunXrlvvuu6/YvnTp0hQKhdx5553Zd999U6tWrXTt2jW///3vi33uueeeHHnkkTnppJPSvn37dOrUKcccc0wuvvjiYp8FCxbkgAMOyHbbbZf69eunT58++eMf/7hB9jvuuCM33nhjCoVChg8fniRZuXJlRowYkaZNm6ZevXrZb7/98vTTT3/WPxkAAAAAAAAAAABsVTVq1EhZWVlatWqV7373uzn22GMze/bsj3yPL0luuOGGdOrUKTVq1EizZs3yb//2bxute9FFF2X77bfPwoULN9rnF7/4RVavXp2ZM2dmt912y5AhQ3LuuefmiiuuSEVFxRa6QwAAAAAAAAAAAAAAAAAAAAAAAAAAvgw+bR3MG264ITvuuGNq1KiRioqKLFu2LIceemjq1KmTevXq5cgjj8zf/va3DWrefffd6dGjR2rWrJntttsuQ4YMKbatWbMm48aNS4sWLVK7du307NkzDz30ULH9L3/5S7797W+nYcOGqV27djp16pQ5c+YkSd56660ce+yxadKkSUpLS9OhQ4fMmDEjSTJ37tw0a9YsP/zhD7PbbrulXbt2GTBgQH7605+mevXqxfqPPfZYevfundLS0rRq1SqjR4/Oe++9V2xv27ZtJk2alBNPPDF169ZN69atc/3112+Q/9/+7d/SrFmz1KxZM23bts1ll11WbP+053PhhRd+7HP98N+iRYsW6d69e84999z853/+Z37zm99k5syZxRpTp05N586dU7t27bRq1SqnnXZa3n333STJQw89lBNOOCErV65MoVBIoVAo7nV+8803p0ePHqlbt27Kysry3e9+N6+99tqn/hu54oorctJJJ+Xkk0/OLrvskmnTpqVVq1a59tprP3UsAACfX5XKDgAAH3bhhRfmwAMPzLx58/LGG2/krbfe2uC1KZ566qmcd955+cMf/pDevXunrKwsRx11VK699tosWrRok2qsWbMme+211+e5FQAAAAAAAAAAAACAr5Xx48dn9OjRWbRoUfr375/Vq1dnjz32yL333pvnnnsuI0aMyPHHH5/HH398g3E///nPU7t27Tz++OP54Q9/mIsuuihz585Nktx+++2ZOnVqrrvuuixevDizZ89O586dP3b+BQsWJElmzJiR5cuXF8//1ZVXXpkpU6bk8ssvzzPPPJP+/ftn0KBBWbx48Qb9zjvvvIwdOzYLFy5Mx44dc8wxx2TdunVJkrKysvz3f/93/vKXv2z0ebzzzjsZNmxYHnnkkfz3f/93OnTokIEDB+add94p5h0wYECOPPLILF++PFdeeWUqKipy8MEHZ8WKFZkzZ06efPLJdO/ePf369cvf//73TfgrAAAAAAAAAAAAwJdDaWlp1q5d+5Hr1157bUaNGpURI0bk2Wefzd1335327dt/pF9FRUXOOOOM/OxnP8v8+fPTrVu3jc71+9//Pn369EmNGjWK1/r3759XX301S5cu3RK3AwAAAAAAAAAAAAAAAAAAAAAAAADAl9SH18H885//nF/96le54447snDhwiTJ4MGD8/e//z0PP/xw5s6dm5dffjlHHXVUcfyvf/3rDBkyJAcffHCeeuqpzJs3Lz169Ci2n3DCCXn00Ucza9asPPPMM/nOd76TAQMGFPfFHjVqVN5///387ne/y7PPPpvJkyenTp06SZLzzz8/L7zwQn7zm99k0aJFufbaa7Pddtsl+ede2cuXL8/vfve7jd7bs88+m/79+2fIkCF55plncuutt2b+/Pn5t3/7tw36TZkyJT169MhTTz2V0047LaeeempefPHFJMn06dNz991351e/+lVeeuml3HzzzWnbtm2Sf64B+nHP55hjjtmg/sc9143Zb7/90rVr19x1113Fa1WqVMn06dPz3HPP5ec//3kefPDBjBs3Lkmy1157Zdq0aalXr16WL1+e5cuXZ+zYsUmSNWvW5OKLL87TTz+d2bNnZ8mSJRk+fPgnzr9mzZo8+eSTOfDAAze4fuCBB+axxx77xLEAAGwZJZUdAAA+7Mc//nFmzpyZ448/frNrdO3aNV27ds3o0aOTJE8//XSmTZuW0aNHp7y8POvXr//UGieffHJ++ctf5vzzz9/sHAAAAAAAAAAAAAAAXydjxozJkCFDNrj2wY/Rk+T000/Pfffdl9tuuy09e/YsXu/SpUsmTJiQJOnQoUOuvvrqzJs3LwcccECWLVuWsrKy7L///qlWrVpat26dPffc82Pnb9KkSZKkQYMGKSsr22jOyy+/POPHj8/RRx+dJJk8eXJ++9vfZtq0afmP//iPDbIffPDBSZILL7wwnTp1yp///OfsvPPOmTBhQoYMGZK2bdumY8eO6dWrVwYOHJgjjjgiVapUSfLPH/N/2HXXXZeGDRvm4YcfziGHHJImTZqkRo0aKS0tLeZ98MEH8+yzz+a1115LjRo1inlnz56d22+/PSNGjNjofQEAAAAAAAAAAMCXxR/+8If88pe/TL9+/T7Sdskll+Sss87KGWecUbz2jW98Y4M+69aty9ChQ/PEE0/k0UcfTcuWLT9xvhUrVhQ3+PnA9ttvX2zbYYcdNvNOAAAAAAAAAAAAAAAAAAAAAAAAAAD4MvvXdTDXrFmTm266qbjn9dy5c/PMM89kyZIladWqVZLkpptuSqdOnbJgwYJ84xvfyKWXXpqjjz46F154YbFu165dkyQvv/xybrnllrzyyitp3rx5kn/uf33fffdlxowZmTRpUpYtW5bDDz88nTt3TpLsuOOOxTrLli3L7rvvnh49eiTJBmtofuc738l//dd/pU+fPikrK8s3v/nN9OvXL0OHDk29evWSJD/60Y/y3e9+N2PGjEnyz33Ap0+fnj59+uTaa69NzZo1kyQDBw7MaaedliQZP358pk6dmoceeig777xzli1blg4dOuRb3/pWCoVC2rRpU8zwwAMPbPT5LFy4MN26dfvY5/ppdt555zzzzDPF8zPOOKO4//cOO+yQiy++OKeeemquueaaVK9ePfXr10+hUPjI/uQnnnhi8XjHHXfM9OnTs+eee+bdd99NnTp1PnbuN954I+vXry+uT/qB7bffPitWrNik/AAAfD5VKjsAAHzYmjVrstdee33uOk899VSmTp2aQw89NPvuu29uuummdO3aNWeeeeYmjV+9enWuuOKK9OnTJ6effnrOPPPMDV4AAAAAAAAAAAAAAGzogx/qf2D9+vW59NJL06VLlzRu3Dh16tTJ/fffn2XLlm3Qr0uXLhucN2vWLK+99lqSf/7Q///+7/+y44475pRTTsldd92VdevWbXbGVatW5dVXX83ee++9wfW99947ixYt2miuZs2aJUkxV7NmzfL73/8+zz77bEaPHp21a9dm2LBhGTBgQMrLy4t9R44cmY4dO6Z+/fqpX79+3n333Y/c/4c9+eSTeffdd4vP64PXkiVL8vLLL2/2fQMAAAAAAAAAAMAX7d57702dOnVSs2bN9OrVK717985VV121QZ/XXnstr776anHzoo353ve+l9///vd55JFH0rJly02av1AobHBeUVHxsdcBAAAAAAAAAAAAAAAAAAAAAAAAANi2fdI6mG3atEmTJk2KfRctWpRWrVqlVatWxWu77rprGjRoUNzXeuHChRtdL/OPf/xjKioq0rFjxw32nX744YeL+06PHj06l1xySfbee+9MmDAhzzzzTHH8qaeemlmzZqVbt24ZN25cHnvssWJb1apVM2PGjLzyyiv54Q9/mObNm+fSSy9Np06dsnz58iT/3Pd65syZG8zdv3//lJeXZ8mSJcVaH96Tu1AopKysrLgn9/Dhw7Nw4cLstNNOGT16dO6///5Nej6LFy8uXvvX5/ppKioqNlgX9Le//W0OOOCAtGjRInXr1s3QoUPz5ptv5r333vvEOk899VQOPfTQtGnTJnXr1k3fvn2T5BP3Cv/Ax61Xaq1SAICto6SyAwDAh5188sn55S9/mfPPP3+zazRs2DDvvvtuunbtmr59++aUU05J7969U69evU2u8cwzz6Rbt25Jkueee26DNh9aAAAAAAAAAAAAAAB8VO3atTc4nzJlSqZOnZpp06alc+fOqV27dsaMGZM1a9Zs0K9atWobnBcKhZSXlydJWrVqlZdeeilz587NAw88kNNOOy0/+tGP8vDDD39k3GexKT9w/3D9D9o+yPWB3XbbLbvttltGjRqV+fPnZ5999snDDz+cfffdN8OHD8/rr7+eadOmpU2bNqlRo0Z69er1kfv/sPLy8jRr1iwPPfTQR9oaNGjwGe8SAAAAAAAAAAAAtp5999031157bapVq5bmzZt/7Pf8SktLN6nWAQcckFtuuSX/9V//lWOPPfZT+5eVlWXFihUbXPtgM6Dtt99+k+YEAAAAAAAAAAAAAAAAAAAAAAAAAGDb8EnrYP7rXtsft3/1v17/pDUzy8vLU7Vq1Tz55JOpWrXqBm116tRJkpx88snp379/fv3rX+f+++/PZZddlilTpuT000/PQQcdlL/85S/59a9/nQceeCD9+vXLqFGjcvnllxfrtGjRIscff3yOP/74XHLJJenYsWN+/OMf58ILL0x5eXn+3//7fxk9evRHsrVu3bp4/El7hXfv3j1LlizJb37zmzzwwAM58sgjs//+++f222/fpOeTfPS5fppFixalbdu2SZJXXnklhxxySEaOHJmLL744jRo1yvz583PSSSdl7dq1G63x3nvv5cADD8yBBx6Ym2++OU2aNMmyZcvSv3//T9wrfLvttkvVqlU/dr1Sa5UCAGwdJZUdAAA+bPXq1bn++uvzwAMPpEuXLh/5IOWKK6741Bo33XRTevfunXr16m12jt/+9rebPRYAAAAAAAAAAAAAgOSRRx7JoYcemuOOOy7JPxcEWLx4cXbZZZfPVKe0tDSDBg3KoEGDMmrUqOy888559tln071794/0rVatWtavX7/RWvXq1Uvz5s0zf/789O7du3j9sccey5577vmZcv2rXXfdNck/f3yf/PP+r7nmmgwcODBJ8te//jVvvPHGJ9bo3r17VqxYkZKSkuIiAAAAAAAAAAAAALAtqF27dtq3b/+JferWrZu2bdtm3rx52XfffTfab9CgQfn2t7+d7373u6latWqOPvroT6zbq1evnHvuuVmzZk2qV6+eJLn//vvTvHlz38cDAAAAAAAAAAAAAAAAAAAAAAAAAPiK2ZR1MD+w6667ZtmyZfnrX/+aVq1aJUleeOGFrFy5srjfdpcuXTJv3ryccMIJHxm/++67Z/369Xnttdeyzz77bHSeVq1aZeTIkRk5cmTOOeec/OQnP8npp5+eJGnSpEmGDx+e4cOHZ5999snZZ5+dyy+//GPrNGzYMM2aNSvuld29e/c8//zzm3y/G1OvXr0cddRROeqoo3LEEUdkwIAB+fvf//6Jz6dDhw6bNdeDDz6YZ599NmeccUaS5Omnn866desyZcqUVKlSJUnyq1/9aoMx1atX/8j+5C+++GLeeOON/OAHPyhme+KJJz51/urVq2ePPfbI3Llzc9hhhxWvz507N4ceeuhm3RMAAJ9NSWUHAIAPe+aZZ9KtW7ckyXPPPbdBW6FQ2KQahxxyyJaOBQAAAAAAAAAAAADAZ9S+ffvccccdeeyxx9KwYcNcccUVWbFiRXHxgE0xc+bMrF+/Pj179kytWrVy0003pbS0NG3atPnY/m3bts28efOy9957p0aNGmnYsOFH+px99tmZMGFC2rVrl27dumXGjBlZuHBhfvGLX2xyrlNPPTXNmzfPfvvtl5YtW2b58uW55JJL0qRJk/Tq1at4/zfddFN69OiRVatW5eyzz05paekn1t1///3Tq1evDB48OJMnT85OO+2UV199NXPmzMngwYPTo0ePTc4IAAAAAAAAAAAAX0YTJ07MyJEj07Rp0xx00EF555138uijjxY3D/rAYYcdlptuuinHH398SkpKcsQRR2y05ne/+91ceOGFGT58eM4999wsXrw4kyZNygUXXLDJa9oCAAAAAAAAAAAAAAAAAAAAAAAAAPDVs//++6dLly459thjM23atKxbty6nnXZa+vTpU9wzesKECenXr1/atWuXo48+OuvWrctvfvObjBs3Lh07dsyxxx6boUOHZsqUKdl9993zxhtv5MEHH0znzp0zcODAjBkzJgcddFA6duyYt956Kw8++GBxL+8LLrgge+yxRzp16pT3338/9957b7Htuuuuy8KFC3PYYYelXbt2Wb16dW688cY8//zzueqqq5Ik48ePzze/+c2MGjUqp5xySmrXrp1FixZl7ty5xT6fZurUqWnWrFm6deuWKlWq5LbbbktZWVkaNGjwic+na9eun1r7/fffz4oVK7J+/fr87W9/y3333ZfLLrsshxxySIYOHZrXX389bdq0ybp163LVVVfl29/+dh599NH8+Mc/3qBO27Zt8+6772bevHnp2rVratWqldatW6d69eq56qqrMnLkyDz33HO5+OKLN+mezzzzzBx//PHp0aNHevXqleuvvz7Lli3LyJEjN2k8AACfT0llBwCAD/vtb39b2RGKFixYkNtuuy3Lli3LmjVrNmi78847KykVAAAAAAAAAAAAAMC24fzzz8+SJUvSv3//1KpVKyNGjMjgwYOzcuXKTa7RoEGD/OAHP8iZZ56Z9evXp3PnzrnnnnvSuHHjj+0/ZcqUnHnmmfnJT36SFi1aZOnSpR/pM3r06KxatSpnnXVWXnvttey66665++6706FDh03Otf/+++eGG27ItddemzfffDPbbbddevXqlXnz5hWz3XDDDRkxYkR23333tG7dOpMmTcrYsWM/sW6hUMicOXNy3nnn5cQTT8zrr7+esrKy9O7dO9tvv/0m5wMAAAAAAAAAAIAvq2HDhmX16tWZOnVqxo4dm+222y5HHHHEx/Y94ogjUl5enuOPPz5VqlTJkCFDPrZf/fr1M3fu3IwaNSo9evRIw4YNc+aZZ+bMM8/8Im8FAAAAAAAAAAAAAAAAAAAAAAAAAIAvuUKhkNmzZ+f0009P7969U6VKlQwYMCBXXXVVsU/fvn1z22235eKLL84PfvCD1KtXL7179y62z5gxI5dccknOOuus/O///m8aN26cXr16ZeDAgUmS9evXZ9SoUXnllVdSr169DBgwIFOnTk2SVK9ePeecc06WLl2a0tLS7LPPPpk1a1aSZM8998z8+fMzcuTIvPrqq6lTp046deqU2bNnp0+fPkmSLl265OGHH855552XffbZJxUVFWnXrl2OOuqoTX4GderUyeTJk7N48eJUrVo13/jGNzJnzpxUqVIlST72+Vx55ZWpqKj41Nr33XdfmjVrlpKSkjRs2DBdu3bN9OnTM2zYsGKf3XbbLVOmTMnkyZNzzjnnpHfv3rnssssydOjQYp+99torI0eOzFFHHZU333wzEyZMyMSJEzNz5syce+65mT59erp3757LL788gwYN+tRcH9S56KKLsnz58uy2226ZM2dO2rRps8nPDQCAzVeo2JR3kwDwNTNr1qwMHTo0Bx54YObOnZsDDzwwixcvzooVK3LYYYdlxowZlR0R+BJYtWpV6tevn5UrV6ZevXqVHQcAAAAAAAAAAAAAAAAAAAAAAAAA4Cutbdu2GTNmTMaMGbNZ4/v27Ztu3bpl2rRpWzQXAAAAAAAAAAAAAAAAAAAAAAAAAAB8VZSXl2fFihVJkrKyslSpUqVSanyahx56KPvuu2/eeuutNGjQ4DOPX7p0aXbYYYc89dRT6dat2wZta9asyaRJk5Ik5557bqpXr74FEleer9r9AACVY9WqValfv35WrlyZevXqbbTfln/nBwCf04IFCzJu3LgcffTRGTJkyAavrWXSpEmZOnVq7r333lSvXj1XXnllFi1alCOPPDKtW7feajkAAAAAAAAAAAAAAAAAAAAAAAAAAAD4/40fPz516tTJypUrN3nML37xi9SpUyePPPLIF5gMAAAAAAAAAAAAAAAAAAAAAAAAAADY2lq2bJljjjnmM4056KCD0qlTpy8oEQDA11tJZQcAgA+bNWtWhg4dmgMPPDBz587NgQcemMWLF2fFihU57LDDtlqOl19+OQcffHCSpEaNGnnvvfdSKBTyve99L/vtt18uvPDCrZYFAAAAAAAAAAAAAAAAAAAAAAAAAACA5OGHH87atWuTJHXr1t3kcYMGDUrPnj2TJA0aNPgiogEAAAAAAAAAAAAAAAAAAAAAAAAAwFdGSUnJl6LGJ+nZs2cWL16cJKlTp85nGvvTn/40//d//5ckad269RbPBgDwdfbFvgsEgM9o0qRJmTp1akaNGpW6devmyiuvzA477JD/9//+X5o1a7bVcjRq1CjvvPNOkqRFixZ57rnn0rlz57z99tv5xz/+sdVyAAAAAAAAAAAAAAAAAAAAAAAAAAAA8E9t2rTZrHF169ZN3bp1t3AaAAAAAAAAAAAAAAAAAAAAAAAAAAD46ikUCqlevXrxuLJqfJrS0tK0b99+s8a2aNFiC6cBAOADVSo7AAB82Msvv5yDDz44SVKjRo289957KRQK+d73vpfrr79+q+XYZ599Mnfu3CTJkUcemTPOOCOnnHJKjjnmmPTr12+r5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANga1q5dm5tvvjk333xz1q5dW2k1AADYNpVUdgAA+LBGjRrlnXfeSZK0aNEizz33XDp37py33347//jHP7ZajquvvjqrV69OkpxzzjmpVq1a5s+fnyFDhuT888/fajkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2ljfeeONLUQMAgG1PSWUHAIAP22effTJ37tx07tw5Rx55ZM4444w8+OCDmTt3bvr16/eFz79q1aokSUlJSerUqVM8HzlyZEaOHPmFzw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANuaksoOAAAfdvXVV2f16tVJknPOOSfVqlXL/PnzM2TIkJx//vlf+PwNGjRIoVD41H7r16//wrMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC2oKSyAwDAB9atW5d77rkn/fv3T5JUqVIl48aNy7hx47Zaht/+9rfF44qKigwcODA//elP06JFi62WAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtiUllR0AAD5QUlKSU089NYsWLaq0DH369NngvGrVqvnmN7+ZHXfcsZISAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAl1uVyg4AAB/Ws2fPPPXUU5UdAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2EQllR0AAD7stNNOy1lnnZVXXnkle+yxR2rXrr1Be5cuXSopGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFfbdttt96WoAQDAtqeksgMAQJKceOKJmTZtWo466qgkyejRo4tthUIhFRUVKRQKWb9+/VbPVigUtvqcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW1O1atVy3HHHFY8rqwYAANumksoOAABJ8vOf/zw/+MEPsmTJkkrNMWTIkA3OV69enZEjR6Z27dobXL/zzju3ZiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAvVKFQSIMGDT5XjYqKiqxZs6Z4XCgUtkAyAAC2BSWVHQAAkn9+IJEkbdq0qdQc9evX3+D8uOOOq6QkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW0bbtm0zZsyYjBkzZqN9Jk6cmNmzZ2fhwoWfa65169Z9rvEfZ8WKFTn++OPz2GOPpVq1ann77be3+BwAAHw+JZUdAAA+UCgUKjtCZsyYUdkRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbVShUPjE9mHDhmXmzJlbJ8yHLFiwILVr1y6eFwqF3HXXXRk8eHDx2tixY3P66adv8bmvu+66XHPNNfnzn/+catWqZYcddsjRRx+d8ePHb3KNqVOnZvny5Vm4cGHq16+/xTMCAPD5lVR2AAD4QMeOHT/1Q5q///3vWykNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAZ7N8+fLi8a233poLLrggL730UvFaaWnpBv3Xrl2batWqfeG5mjRp8ql96tSpkzp16mzReX/2s5/lzDPPzPTp09OnT5+8//77eeaZZ/LCCy98pjovv/xy9thjj3To0GGL5gMAYMupUtkBAOADF154YaZOnfqJLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC+rsrKy4qt+/fopFArF89WrV6dBgwb51a9+lb59+6ZmzZq5+eab8+abb+aYY45Jy5YtU6tWrXTu3Dm33HLLBnX79u2b0aNHZ9y4cWnUqFHKysoyceLEDfpMnDgxrVu3To0aNdK8efOMHj262Na2bdtMmzateJwkhx12WAqFQvF84sSJ6datW3FMeXl5LrroorRs2TI1atRIt27dct999xXbly5dmkKhkDvvvDP77rtvatWqld133z1PPPFEsc8999yTI488MieddFLat2+fTp065ZhjjsnFF19c7LNgwYIccMAB2W677VK/fv306dMnf/zjHzfIfscdd+TGG29MoVDI8OHDkyQrV67MiBEj0rRp09SrVy/77bdfnn766c/6JwMAYAspqewAAPCBo48+Ok2bNq3sGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF+Y8ePHZ8qUKZkxY0Zq1KiR1atXZ4899sj48eNTr169/PrXv87xxx+fHXfcMT179iyO+/nPf54zzzwzjz/+eH7/+99n+PDh2XvvvXPAAQfk9ttvz9SpUzNr1qx06tQpK1asyNNPP/2x8y9YsCBNmzbNjBkzMmDAgFStWvVj+1155ZWZMmVKrrvuuuy+++654YYbMmjQoDz//PPp0KFDsd95552Xyy+/PB06dMi5556bUaNG5dFHH02SlJWV5eGHH85f/vKXtGnT5mPneeeddzJs2LBMnz49STJlypQMHDgwixcvTt26dbNgwYIMHTo09erVy5VXXpnS0tJUVFTk4IMPTqNGjTJnzpzUr18/1113Xfr165c//elPadSo0Wb9bQAA2HwllR0AAJKkUChUdgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAv3JgxYzJkyJANro0dO7Z4fPrpp+e+++7Lbbfdlp49exavd+nSJRMmTEiSdOjQIVdffXXmzZuXAw44IMuWLUtZWVn233//VKtWLa1bt86ee+75sfM3adIkSdKgQYOUlZVtNOfll1+e8ePH5+ijj06STJ48Ob/97W8zbdq0/Md//McG2Q8++OAkycSJE9O5c+csXbo0LVu2zIQJEzJkyJC0bds2HTt2TK9evTJw4MAcccQRqVKlSpJkv/3222De6667Lg0bNszDDz+cQw45JE2aNEmNGjVSWlpazPvggw/m2WefzWuvvZYaNWoU886ePTu33357RowYsdH7AgDgi1GlsgMAQJJUVFRUdgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAvXI8ePTY4X79+fS699NJ06dIljRs3Tp06dXL//fdn2bJlG/Tr0qXLBufNmjXLa6+9liT5zne+k//7v//LjjvumFNOOSV33XVX1q1bt9kZV61alVdffTV77733Btf33nvvLFq0aKO5mjVrliR54403iue///3v8+yzz2b06NFZu3Zthg0blgEDBqS8vDxJ8tprr2XkyJHp2LFj6tevn/r16+fdd9/9yP1/2JNPPpl33323+Lw+eC1ZsiQvv/zyZt83AACbr6SyAwBAkuIHDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9ltWvX3uB8ypQpmTp1aqZNm5bOnTundu3aGTNmTNasWbNBv2rVqm1wXigUUl5eniRp1apVXnrppcydOzcPPPBATjvttPzoRz/Kww8//JFxn0WhUNjgvKKi4iPXPlz/g7YPcn1gt912y2677ZZRo0Zl/vz52WefffLwww9n3333zfDhw/P6669n2rRpadOmTWrUqJFevXp95P4/rLy8PM2aNctDDz30kbYGDRp8xrsEAGBLKKnsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwdfXII4/k0EMPzXHHHZckKS8vz+LFi7PLLrt8pjqlpaUZNGhQBg0alFGjRmXnnXfOs88+m+7du3+kb7Vq1bJ+/fqN1qpXr16aN2+e+fPnp3fv3sXrjz32WPbcc8/PlOtf7brrrkmS9957L8k/7/+aa67JwIEDkyR//etf88Ybb3xije7du2fFihUpKSlJ27ZtP1ceAAC2jJLKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX1ft27fPHXfckcceeywNGzbMFVdckRUrVmSXXXbZ5BozZ87M+vXr07Nnz9SqVSs33XRTSktL06ZNm4/t37Zt28ybNy977713atSokYYNG36kz9lnn50JEyakXbt26datW2bMmJGFCxfmF7/4xSbnOvXUU9O8efPst99+admyZZYvX55LLrkkTZo0Sa9evYr3f9NNN6VHjx5ZtWpVzj777JSWln5i3f333z+9evXK4MGDM3ny5Oy000559dVXM2fOnAwePDg9evTY5IwAAGwZVSo7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8XZ1//vnp3r17+vfvn759+6asrCyDBw/+TDUaNGiQn/zkJ9l7773TpUuXzJs3L/fcc08aN278sf2nTJmSuXPnplWrVtl9990/ts/o0aNz1lln5ayzzkrnzp1z33335e67706HDh02Odf++++f//7v/853vvOddOzYMYcffnhq1qyZefPmFbPdcMMNeeutt7L77rvn+OOPz+jRo9O0adNPrFsoFDJnzpz07t07J554Yjp27Jijjz46S5cuzfbbb7/J+QAA2HIKFRUVFZUdAgAAtkWrVq1K/fr1s3LlytSrV6+y4wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVKry8vKsWLEiSVJWVpYqVapUcqLPZs2aNZk0aVKS5Nxzz0316tUrOdHn81W7HwCgcqxatSr169fPypUrU69evY3227be+QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwpVJS2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK+GkpKSyo4AAEAl8C4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPjcCoVCqlevXjwGAODro0plBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtn1r167NzTffnJtvvjlr166t7DgAAGxFJZUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4anjjjTcqOwIAAJWgSmUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDbVaWyAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw7apS2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2HZVqewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy7qlR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2XSWVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+GrYbrvtKjvC57Kt5wcAqCwllR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANj2VatWLccdd1zxeFuzrecHAKhMJZUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADY9hUKhTRo0KCyY2y2ioqKrFmzpnhcKBQqOREAwLajSmUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICvm4ceeiiFQiFvv/32Fqm3dOnSFAqFLFy4cIvU+zr44JkVCoV069YtSbJu3bqsW7fuU8cOHz68OHb27NlfbFAAgG1AlcoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfRcOHD0+hUEihUEi1atWy4447ZuzYsXnvvfe2+FytWrXK8uXLs9tuu23Ruu+9917Gjx+fHXfcMTVr1kyTJk3St2/f3HvvvVt0nsr0wAMPZN68eRtcu+OOO7LrrrumRo0a2XXXXXPXXXdt0H7llVdm+fLlWzMmAMCXWkllBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAr6oBAwZkxowZWbt2bR555JGcfPLJee+993LUUUdt0XmqVq2asrKyLVozSUaOHJk//OEPufrqq7PrrrvmzTffzGOPPZY333xzi89VWRo3bpzGjRunvLw8SfLEE0/kmGOOycUXX5zDDjssd911V4488sjMnz8/PXv2TJLUr18/9evXr8zYAABfKlUqOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfFXVqFEjZWVladWqVb773e/m2GOPzezZsz/S780338wxxxyTli1bplatWuncuXNuueWWDfqUl5dn8uTJad++fWrUqJHWrVvn0ksvTZIsXbo0hUIhCxcuTJI89NBDKRQKmTdvXnr06JFatWplr732yksvvbRBzUsuuSRNmzZN3bp1c/LJJ+f73/9+unXrVmy/5557cu6552bgwIFp27Zt9thjj5x++ukZNmxYsU+hUPjIPTVo0CAzZ84snr/yyis5+uij06hRo9SuXTs9evTI448/Xmy/++6706NHj9SsWTPbbbddhgwZUmxbs2ZNxo0blxYtWqR27drp2bNnHnrooWL7X/7yl3z7299Ow4YNU7t27XTq1Clz5sxJkrz11ls59thj06RJk5SWlqZDhw6ZMWPGRv9eSfLTn/40+++/f84555zsvPPOOeecc9KvX79MmzbtE8cBAHydVansAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwdVFaWpq1a9d+5Prq1auzxx575N57781zzz2XESNG5Pjjj8/jjz9e7HPOOedk8uTJOf/88/PCCy/kl7/8ZbbffvtPnO+8887LlClT8sQTT6SkpCQnnnhise0Xv/hFLr300kyePDlPPvlkWrdunWuvvXaD8WVlZZkzZ07eeeedzb7nd999N3369Mmrr76au+++O08//XTGjRuX8vLyJMmvf/3rDBkyJAcffHCeeuqpzJs3Lz169CiOP+GEE/Loo49m1qxZeeaZZ/Kd73wnAwYMyOLFi5Mko0aNyvvvv5/f/e53efbZZzN58uTUqVMnSYrP6je/+U0WLVqUa6+9Ntttt90n5n3yySdz4IEHbnCtf//+eeyxxzb7GQAAfNWVVHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPg6+MMf/pBf/vKX6dev30faWrRokbFjxxbPTz/99Nx333257bbb0rNnz7zzzju58sorc/XVV2fYsGFJknbt2uVb3/rWJ8556aWXpk+fPkmS73//+zn44IOzevXq1KxZM1dddVVOOumknHDCCUmSCy64IPfff3/efffd4vjrr78+xx57bBo3bpyuXbvmW9/6Vo444ojsvffem3zfv/zlL/P6669nwYIFadSoUZKkffv2G2Q8+uijc+GFFxavde3aNUny8ssv55Zbbskrr7yS5s2bJ0nGjh2b++67LzNmzMikSZOybNmyHH744encuXOSZMcddyzWWbZsWXbffff06NEjSdK2bdtPzfv666+nadOmG1zbfvvts2LFik2+ZwCAr5sqlR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL6q7r333tSpUyc1a9ZMr1690rt371x11VUf6bd+/fpceuml6dKlSxo3bpw6derk/vvvz7Jly5IkixYtyvvvv59+/fp9pvm7dOlSPG7WrFmS5LXXXkuSvPTSS9lzzz036P+v5717987//M//ZN68eTn88MPz/PPPZ5999snFF1+8yRkWLlyY3XffPY0aNdpo+8bu649//GMqKirSsWPH1KlTp/h6+OGH8/LLLydJRo8enUsuuSR77713JkyYkGeeeaY4/tRTT82sWbPSrVu3jBs3Lo899tgmZS4UChucV1RUfOQaAAD/vyqVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvqr23XffLFy4MC+99FJWr16dO++8M02bNv1IvylTpmTq1KkZN25cHnzwwSxcuDD9+/fPmjVrkiSlpaWbNX+1atWKx4VCIUlSXl7+kWsfqKio+Nga++yzT77//e/n/vvvz0UXXZSLL764mK1QKHxk3Nq1a4vHn5b9k9rLy8tTtWrVPPnkk1m4cGHxtWjRolx55ZVJkpNPPjn/8z//k+OPPz7PPvtsevTokauuuipJctBBB+Uvf/lLxowZk1dffTX9+vXL2LFjPzFPkyZN8re//W2Da6+99lq23377TxwHAPB1VqWyAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAV1Xt2rXTvn37tGnTJtWqVdtov0ceeSSHHnpojjvuuHTt2jU77rhjFi9eXGzv0KFDSktLM2/evC2Wbaeddsof/vCHDa498cQTnzpu1113zbp167J69eokSZMmTbJ8+fJi++LFi/OPf/yjeN6lS5csXLgwf//73z+2XpcuXTZ6X7vvvnvWr1+f1157Le3bt9/gVVZWVuzXqlWrjBw5MnfeeWfOOuus/OQnPym2NWnSJMOHD8/NN9+cadOm5frrr//E+9tjjz0yd+7cDa7df//92WuvvT5xHADA11lJZQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK+79u3b54477shjjz2Whg0b5oorrsiKFSuyyy67JElq1qyZ8ePHZ9y4calevXr23nvvvP7663n++edz0kknbdacp59+ek455ZT06NEje+21V2699dY888wz2XHHHYt9+vbtm2OOOSY9evRI48aN88ILL+Tcc8/Nvvvum3r16iVJ9ttvv1x99dX55je/mfLy8owfPz7VqlUr1jjmmGMyadKkDB48OJdddlmaNWuWp556Ks2bN0+vXr0yYcKE9OvXL+3atcvRRx+ddevW5Te/+U3GjRuXjh075thjj83QoUMzZcqU7L777nnjjTfy4IMPpnPnzhk4cGDGjBmTgw46KB07dsxbb72VBx98sPjcLrjgguyxxx7p1KlT3n///dx7773Fto056aSTcvjhh2fy5Mk59NBD85//+Z954IEHMn/+/M16zgAAXwdVKjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzdnX/++enevXv69++fvn37pqysLIMHD/5In7POOisXXHBBdtlllxx11FF57bXXNnvOY489Nuecc07Gjh2b7t27Z8mSJRk+fHhq1qxZ7NO/f//8/Oc/z4EHHphddtklp59+evr3759f/epXxT5TpkxJq1at0rt373z3u9/N2LFjU6tWrWJ79erVc//996dp06YZOHBgOnfunB/84AepWrVqkqRv37657bbbcvfdd6dbt27Zb7/98vjjjxfHz5gxI0OHDs1ZZ52VnXbaKYMGDcrjjz+eVq1aJUnWr1+fUaNGZZdddsmAAQOy00475ZprrinOfc4556RLly7p3bt3qlatmlmzZn3ic/nGN76RX/7yl5kxY0a6dOmSmTNn5tZbb03Pnj03+1kDAHzVFSoqKioqOwQAAGyLVq1alfr162flypWpV69eZccBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPjcDjjggJSVleWmm26q7ChfuKVLl2aHHXbIU089lW7duqW8vDwrVqxIkpSVlaVKlSqfWqNQKOSuu+7K4MGDv+C0n92aNWsyadKkJMm5556b6tWrV3IiAGBbtGrVqtSvXz8rV65MvXr1Ntrv0985AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfOf/4xz9yxRVX5Pnnn8+LL76YCRMm5IEHHsiwYcMqO9pWtddee2Wvvfb6TGNGjhyZOnXqfEGJAAC2PSWVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2PoKhULmzJmTSy65JO+//3522mmn3HHHHdl///0rO9pW0bJlyyxevDhJUqNGjSRJSUnJJo296KKLMnbs2CRJs2bNvpiAAADbkE17FwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfKWUlpbmgQceqOwYlaakpCTt27cvnldUVKR69epJkkKh8IljmzZtmqZNm36h+QAAtiVVKjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBlW7t2bW6++ebcfPPNWbt2bWXHAQDYppRUdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC+DN954o7IjAABsk6pUdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtl1VKjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANuuKpUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBtV5XKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAtqtKZQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNtVUtkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+DLbbbrvKjgAAsE0qqewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVrVq1ajnuuOOKxwAAbLqSyg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDZCoVCGjRoUNkxAAC2SVUqOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJfBQw89lEKhkLfffjtJMnPmzBQKhRQKhYwZM+Yz1Wrbtm1x7Af1AAC+qqpUdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM9q+PDhKRQKH3kNGDBgi85Tr169LF++PBdffHHxWkVFRSZOnJjmzZuntLQ0ffv2zfPPP7/BuAULFuSOO+7YolkAAL6sqlR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/a+9Og60qz/Rx33uLMp3DYZLBAQobRJDBgIrYaQFtJzQBtVqDxJJ2iERjSdNR4xhMEMXYalKWdJnYomWMVpctmoS2tEw4QGgSRVE0xIGA4oDEgUFEUNm/D/nn/HMCCBJxna3XVbWq9nqH9d5r8e2ppw4AAAAAAAAA7Ihjjjkmr7/+eqPrZz/72ad6RqlUSpcuXVJbW9swdt111+WGG27IzTffnMceeyxdunTJkUcembVr1zas2X333dO+fftPNQsAQFNVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCOaN68ebp06dLoateuXZKkVCrlJz/5SU444YS0atUqvXr1yoMPPtho/8yZM7PvvvumZcuWGTFiRJYtW7bNMyuVSm666aZcdtllOfHEE9OvX7/ccccdee+993L33XfvjNcEAGjyykUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYGa666qqcfPLJefrppzNy5MiMHTs2b7/9dpJk+fLlOfHEEzNy5MgsXLgwZ511Vr7zne9s85lLly7NihUrctRRRzWMNW/ePMOGDcu8efN22rsAADRl5aIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsiF/84hepqalpdH3/+99vmB83blzGjBmTnj17ZsqUKVm3bl1+97vfJUmmTZuWffbZJzfeeGN69+6dsWPHZty4cds8c8WKFUmSzp07Nxrv3LlzwxwAwBdNs6IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsiBEjRmTatGmNxtq3b9/we8CAAQ2/W7dundra2qxcuTJJsnjx4hxyyCEplUoNa4YOHbrdZ//1viSpVCqbjQEAfFE0KzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCOaN26dXr27LnV+V133bXRfalUyqZNm5IklUplh87s0qVLkmTFihXp2rVrw/jKlSvTuXPnHXomAEC1KxcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgs9a3b9/Mnz+/0djf3m9Jjx490qVLlzzyyCMNYxs3bkx9fX0OPfTQTz0nAEA1KBcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgR2zYsCErVqxodL355pvbtXf8+PFZsmRJJk6cmOeeey533313pk+fvs19pVIpEyZMyJQpU3L//ffnmWeeybhx49KqVauceuqpf+cbAQBUp2ZFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2BEPPfRQunbt2misd+/e+cMf/rDNvd26dct9992Xf/u3f8stt9ySgw8+OFOmTMkZZ5yxzb0XXXRR1q9fn3PPPTfvvPNOhgwZkocffji1tbU7/C4AANWsWdEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+qenTp2f69Olbna9UKpuNrVq1qtH98ccfn+OPP77R2L/+679u8+xSqZRJkyZl0qRJ2xMVAOBzr1x0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApmr16tWpqanJxRdf/In27b///jn22GN3UioAgKalWdEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaopNOOilf/vKXkyRt27b9RHtnzpyZDz74IEnSpk2bTzsaAECT0qzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATVFtbW1qa2t3aG/37t0/5TQAAE1XuegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSvctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhe5aIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFC9ykUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB6lYsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDqVS46AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVq1nRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+PR17Nix6AgAwBdEs6IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw6dp1113z9a9/veE3AMDO1KzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfLpKpVLatm1bdAwA4AuiXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBqUyqVMmPGjKJj7FTLli1LqVTKwoULkySzZs1KqVTKqlWrPrMzAYDqUC46AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAU7Ny5cqcc8456datW5o3b54uXbrk6KOPzv/93/8VkmfWrFkplUqbXZdffnkheQAA/lqzogMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ1J510Uj744IPccccd2WefffLGG2/k0Ucfzdtvv11orueeey5t2rRpuK+pqSkwDQDAn5WLDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0JSsWrUqc+fOzdSpUzNixIh07949Bx98cC655JIcd9xxDevefPPNnHDCCWnVqlV69eqVBx98sNFz6uvrc/DBB6d58+bp2rVrvvOd7+TDDz9Mkvz85z9P27Zts2nTpiTJwoULUyqVcuGFFzbsP+ecczJmzJhGz+zUqVO6dOnScNXU1CRJXn311Zxyyilp165dOnTokFGjRmXZsmWN9t5+++3p06dPWrRokf322y+33HJLo/nf/e53+dKXvpQWLVrkwAMPzJNPPrnF7/Ob3/wmAwcOTIsWLTJkyJAsWrSoYe6tt97KmDFjstdee6VVq1bp379/fvaznzXav2nTpkydOjU9e/ZM8+bN061bt1x99dVbPGvTpk05++yzs+++++all17a4hoAoHjlogMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQlNTU1qampyYwZM7Jhw4atrrvqqqty8skn5+mnn87IkSMzduzYvP3220mSV199NSNHjsxBBx2Up556KtOmTcttt92WyZMnJ0kOO+ywrF27Nk8++WSSpL6+Ph07dkx9fX3D82fNmpVhw4ZtM+97772XESNGpKamJrNnz87cuXNTU1OTY445Jhs3bkyS/PjHP85ll12Wq6++OosXL86UKVNyxRVX5I477kiSrFu3Lscff3x69+6dBQsWZNKkSfn2t7+9xfMuvPDCXH/99XnsscfSqVOnfPWrX80HH3yQJHn//fczePDg/OIXv8gzzzyTb3zjGznttNPy29/+tmH/JZdckqlTp+aKK67I73//+9x9993p3LnzZuds3LgxJ598ch5//PHMnTs33bt33+a3AACKUapUKpWiQwAAQDVas2ZN6urqsnr16rRp06boOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfIruu+++nH322Vm/fn0GDRqUYcOG5Wtf+1oGDBiQJCmVSrn88svz/e9/P0mybt261NbWZubMmTnmmGNy2WWX5b777svixYtTKpWSJLfccksuvvjirF69OuVyOYMHD86pp56af//3f88JJ5yQgw46KFdddVXefPPNrFu3Ll27ds3ixYuz3377ZdasWRkxYkRat27dKOdLL72UBx54INddd12jszZu3Ji2bdtmxowZOeqoo9KtW7dMnTo1Y8aMadg7efLkzJw5M/Pmzcutt96aSy65JMuXL0+rVq2SJP/5n/+Zb37zm3nyySdzwAEHNGS45557csoppyRJ3n777ey1116ZPn16Tj755C1+y+OOOy59+vTJ9ddfn7Vr12b33XfPzTffnLPOOmuztcuWLUuPHj0yZ86cXHXVVVm/fn1++ctfpq6u7u/55wQAdtCaNWtSV1eX1atXp02bNltdV/4MMwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVIWTTjopr732Wh588MEcffTRmTVrVgYNGpTp06c3rBkwYEDD79atW6e2tjYrV65MkixevDhDhw5NqVRqWPOP//iPeffdd/PKK68kSYYPH55Zs2alUqlkzpw5GTVqVPr165e5c+fm17/+dTp37pz99tuvUa45c+Zk4cKFDVe7du2yYMGCvPjii6mtrU1NTU1qamrSvn37vP/++1myZEn+9Kc/Zfny5TnzzDMb5mtqajJ58uQsWbKkIe/AgQPTqlWrhrOGDh26xW/z1+Pt27dP7969s3jx4iTJRx99lKuvvjoDBgxIhw4dUlNTk4cffjgvv/xywzkbNmzIEUcc8bHff8yYMXn33Xfz8MMPp66u7mPXAgDFa1Z0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApqhFixY58sgjc+SRR+bKK6/MWWedle9+97sZN25ckmTXXXdttL5UKmXTpk1JkkqlklKp1Gi+Uqk0rEuS4cOH57bbbstTTz2Vcrmcvn37ZtiwYamvr88777yTYcOGbZapR48eadu2baOxTZs2ZfDgwfnpT3+62frdd98977//fpLkxz/+cYYMGdJofpdddmmUbUf95Z3+4z/+IzfeeGNuuumm9O/fP61bt86ECROycePGJEnLli2363kjR47MXXfdlfnz5+fwww//u7IBADtfuegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVoG/fvlm3bt12r503b14qlUrD2Lx581JbW5s999wzSXLYYYdl7dq1uemmmzJs2LCUSqUMGzYss2bNyqxZszJs2LDtOmvQoEF54YUX0qlTp/Ts2bPRVVdXl86dO2fPPffMH//4x83me/To0ZD3qaeeyvr16xueO3/+/C2e99fj77zzTp5//vnst99+SZI5c+Zk1KhR+frXv56BAwdmn332yQsvvNCwvlevXmnZsmUeffTRj32nb37zm7n22mvz1a9+NfX19dv1HQCA4pSLDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0JS89dZbOfzww3PXXXfl6aefztKlS/Pf//3fue666zJq1Kjtesa5556b5cuX5/zzz88f/vCHPPDAA/nud7+biRMnplwuJ0nq6upywAEH5K677srw4cOTJIcddlieeOKJPP/88w1j2zJ27Nh07Ngxo0aNypw5c7J06dLU19fnggsuyCuvvJIkmTRpUq655pr88Ic/zPPPP59Fixbl9ttvzw033JAkOfXUU1Mul3PmmWfm97//fWbOnJnrr79+i+d973vfy6OPPppnnnkm48aNS8eOHTN69OgkSc+ePfPII49k3rx5Wbx4cc4555ysWLGiYW+LFi1y8cUX56KLLsqdd96ZJUuWZP78+bnttts2O+f888/P5MmTc/zxx2fu3Lnb9S0AgGI0KzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBTUlNTkyFDhuTGG2/MkiVL8sEHH2TvvffO2WefnUsvvXS7nrHnnntm5syZufDCCzNw4MC0b98+Z555Zi6//PJG60aMGJEnnngiw4cPT5K0a9cuffv2zWuvvZY+ffps11mtWrXK7Nmzc/HFF+fEE0/M2rVrs+eee+aII45ImzZtkiRnnXVWWrVqlR/84Ae56KKL0rp16/Tv3z8TJkxoeOef//znGT9+fL70pS+lb9++mTp1ak466aTNzrv22mtzwQUX5IUXXsjAgQPz4IMPZrfddkuSXHHFFVm6dGmOPvrotGrVKt/4xjcyevTorF69umH/FVdckWbNmuXKK6/Ma6+9lq5du2b8+PFbfLcJEyZk06ZNGTlyZB566KEceuih2/VNAIDPVqlSqVSKDgEAANVozZo1qaury+rVqxuKeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwebFmzZrU1dVl9erVadOmzVbXlT/DTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8zpSLDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA9SoXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6lUuOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1atcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqF7logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUL2aFR0AAACqVaVSSZKsWbOm4CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Olbs2ZNkqRSqXzsumafRRgAAPg8Wrt2bZJk7733LjgJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOw8a9euTV1d3VbnS5VKpfIZ5gEAgM+NTZs25bXXXkttbW1KpVLRcfgYa9asyd57753ly5enTZs2RccBAAAAAKga6qsAAAAAADtGfRUAAAAAYMeorwIAAAAA7Bj1VQAAAACAHaO+CgAAAACwY9RXAQAAAAB2jPoqAAAAAMCOUV+FpqFSqWTt2rXZY489Ui6Xt7qu2WeYCQAAPlfK5XL22muvomPwCbRp00axAgAAAABgB6ivAgAAAADsGPVVAAAAAIAdo74KAAAAALBj1FcBAAAAAHaM+ioAAAAAwI5RXwUAAAAA2DHqqwAAAAAAO0Z9FYpXV1e3zTXlzyAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ9T5aIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFC9ykUHAAAA2NmaN2+e7373u2nevHnRUQAAAAAAqor6KgAAAADAjlFfBQAAAADYMeqrAAAAAAA7Rn0VAAAAAGDHqK8CAAAAAOwY9VUAAAAAgB2jvgoAAAAAsGPUV6G6lCqVSqXoEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUp3LRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoXuWiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQvcpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgepWLDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA9SoXHQAAAGBnuuWWW9KjR4+0aNEigwcPzpw5c4qOBAAAAADQpE2aNCmlUqnR1aVLl6JjAQAAAAA0ObNnz85XvvKV7LHHHimVSpkxY0aj+UqlkkmTJmWPPfZIy5YtM3z48Dz77LPFhAUAAAAAaEK2VV8dN27cZv2shxxySDFhAQAAAACakGuuuSYHHXRQamtr06lTp4wePTrPPfdcozV6WAEAAAAANrc99VU9rAAAAAAAm5s2bVoGDBiQNm3apE2bNhk6dGj+93//t2Fe7yoAAAAAwJZtq76qdxUAAAAAYPtcc801KZVKmTBhQsOYHlaoDuWiAwAAAOws9957byZMmJDLLrssTz75ZP7pn/4pxx57bF5++eWiowEAAAAANGn7779/Xn/99YZr0aJFRUcCAAAAAGhy1q1bl4EDB+bmm2/e4vx1112XG264ITfffHMee+yxdOnSJUceeWTWrl37GScFAAAAAGhatlVfTZJjjjmmUT/rzJkzP8OEAAAAAABNU319fc4777zMnz8/jzzySD788MMcddRRWbduXcMaPawAAAAAAJvbnvpqoocVAAAAAOBv7bXXXrn22mvz+OOP5/HHH8/hhx+eUaNG5dlnn02idxUAAAAAYGu2VV9N9K4CAAAAAGzLY489lltvvTUDBgxoNK6HFapDqVKpVIoOAQAAsDMMGTIkgwYNyrRp0xrG+vTpk9GjR+eaa64pMBkAAAAAQNM1adKkzJgxIwsXLiw6CgAAAABA1SiVSrn//vszevToJEmlUskee+yRCRMm5OKLL06SbNiwIZ07d87UqVNzzjnnFJgWAAAAAKDp+Nv6apKMGzcuq1atyowZMwrLBQAAAABQDf70pz+lU6dOqa+vz2GHHaaHFQAAAABgO/1tfTXRwwoAAAAAsL3at2+fH/zgBznjjDP0rgIAAAAAfAJ/qa+eeeaZelcBAAAAALbh3XffzaBBg3LLLbdk8uTJOeCAA3LTTTf5+6tQRcpFBwAAANgZNm7cmAULFuSoo45qNH7UUUdl3rx5BaUCAAAAAKgOL7zwQvbYY4/06NEjX/va1/LHP/6x6EgAAAAAAFVl6dKlWbFiRaNe1ubNm2fYsGF6WQEAAAAAtsOsWbPSqVOn7Lvvvjn77LOzcuXKoiMBAAAAADQ5q1evTvLn/5A70cMKAAAAALC9/ra++hd6WAEAAAAAtu6jjz7KPffck3Xr1mXo0KF6VwEAAAAAttPf1lf/Qu8qAAAAAMDWnXfeeTnuuOPyz//8z43G9bBC9WhWdAAAAICd4c0338xHH32Uzp07Nxrv3LlzVqxYUVAqAAAAAICmb8iQIbnzzjuz77775o033sjkyZNz6KGH5tlnn02HDh2KjgcAAAAAUBX+0q+6pV7Wl156qYhIAAAAAABV49hjj82//Mu/pHv37lm6dGmuuOKKHH744VmwYEGaN29edDwAAAAAgCahUqlk4sSJ+fKXv5x+/fol0cMKAAAAALA9tlRfTfSwAgAAAABszaJFizJ06NC8//77qampyf3335++fftm3rx5SfSuAgAAAABszdbqq4neVQAAAACAj3PPPffkiSeeyGOPPbbZnL+/CtWjWdEBAAAAdqZSqdTovlKpbDYGAAAAAMD/79hjj2343b9//wwdOjT/8A//kDvuuCMTJ04sMBkAAAAAQPXRywoAAAAA8MmdcsopDb/79euXAw88MN27d88vf/nLnHjiiQUmAwAAAABoOr71rW/l6aefzty5czeb08MKAAAAALB1W6uv6mEFAAAAANiy3r17Z+HChVm1alXuu+++nH766amvr2+Y17sKAAAAALBlW6uv9u3bV+8qAAAAAMBWLF++PBdccEEefvjhtGjRYqvr9LBC01cuOgAAAMDO0LFjx+yyyy5ZsWJFo/GVK1emc+fOBaUCAAAAAKg+rVu3Tv/+/fPCCy8UHQUAAAAAoGp06dIlSfSyAgAAAAB8Crp27Zru3bvrZwUAAAAA+P+cf/75efDBB/PrX/86e+21V8O4HlYAAAAAgI+3tfrqluhhBQAAAAD4s9122y09e/bMgQcemGuuuSYDBw7MD3/4Q72rAAAAAADbsLX66pboXQUAAAAA+LMFCxZk5cqVGTx4cJo1a5ZmzZqlvr4+P/rRj9KsWbOGPlU9rND0lYsOAAAAsDPstttuGTx4cB555JFG44888kgOPfTQglIBAAAAAFSfDRs2ZPHixenatWvRUQAAAAAAqkaPHj3SpUuXRr2sGzduTH19vV5WAAAAAIBP6K233sry5cv1swIAAAAAX3iVSiXf+ta38j//8z/51a9+lR49ejSa18MKAAAAALBl26qvbokeVgAAAACALatUKtmwYYPeVQAAAACAT+gv9dUt0bsKAAAAAPBnRxxxRBYtWpSFCxc2XAceeGDGjh2bhQsXZp999tHDClWiWdEBAAAAdpaJEyfmtNNOy4EHHpihQ4fm1ltvzcsvv5zx48cXHQ0AAAAAoMn69re/na985Svp1q1bVq5cmcmTJ2fNmjU5/fTTi44GAAAAANCkvPvuu3nxxRcb7pcuXZqFCxemffv26datWyZMmJApU6akV69e6dWrV6ZMmZJWrVrl1FNPLTA1AAAAAEDxPq6+2r59+0yaNCknnXRSunbtmmXLluXSSy9Nx44dc8IJJxSYGgAAAACgeOedd17uvvvuPPDAA6mtrc2KFSuSJHV1dWnZsmVKpZIeVgAAAACALdhWffXdd9/VwwoAAAAAsAWXXnppjj322Oy9995Zu3Zt7rnnnsyaNSsPPfSQ3lUAAAAAgI/xcfVVvasAAAAAAFtXW1ubfv36NRpr3bp1OnTo0DCuhxWqQ7OiAwAAAOwsp5xySt56661873vfy+uvv55+/fpl5syZ6d69e9HRAAAAAACarFdeeSVjxozJm2++md133z2HHHJI5s+fr7YKAAAAAPA3Hn/88YwYMaLhfuLEiUmS008/PdOnT89FF12U9evX59xzz80777yTIUOG5OGHH05tbW1RkQEAAAAAmoSPq69OmzYtixYtyp133plVq1ala9euGTFiRO699171VQAAAADgC2/atGlJkuHDhzcav/322zNu3Lgk0cMKAAAAALAF26qv7rLLLnpYAQAAAAC24I033shpp52W119/PXV1dRkwYEAeeuihHHnkkUn0rgIAAAAAbM3H1VfXr1+vdxUAAAAA4O+ghxWqQ6lSqVSKDgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAdSoXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6lUuOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1atcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqF7logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUL3KRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHqViw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPUqFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/mLSpEk54IADio4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAfAKlSqVSKToEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn3+lUulj508//fTcfPPN2bBhQzp06PAZpQIAAAAAAAAAAAAAAAAAAAAAAAAAAAD+XqVKpVIpOgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACffytWrGj4fe+99+bKK6/Mc8891zDWsmXL1NXVFRENAAAAAAAAAAAAAAAAAAAAAAAAAAAA+DuUiw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAF0OXLl0arrq6upRKpc3GJk2alAMOOKBhz7hx4zJ69OhMmTIlnTt3Ttu2bXPVVVflww8/zIUXXpj27dtnr732yn/91381OuvVV1/NKaecknbt2qVDhw4ZNWpUli1b9tm+MAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxBlIsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/nV7/6VV577bXMnj07N9xwQyZNmpTjjz8+7dq1y29/+9uMHz8+48ePz/Lly5Mk7733XkaMGJGamprMnj07c+fOTU1NTY455phs3Lix4LcBAAAAAAAAAAAAAAAAAAAAAAAAAACAz59y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg47Rv3z4/+tGP0rt375xxxhnp3bt33nvvvVx66aXp1atXLrnkkuy22275zW9+kyS55557Ui6X85Of/CT9+/dPnz59cvvtt+fll1/OrFmzin0ZAAAAAAAAAAAAAAAAAAAAAAAAAAAA+BxqVnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Dj7779/yuVyw33nzp3Tr1+/hvtddtklHTp0yMqVK5MkCxYsyIsvvpja2tpGz3n//fezZMmSzyY0AAAAAAAAAAAAAAAAAAAAAAAAAAAAfIE0KzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJxdd9210X2pVNri2KZNm5IkmzZtyuDBg/PTn/50s2ftvvvuOy8oAAAAAAAAAAAAAAAAAAAAAAAAAAAAfEE1KzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJoGDRqUe++9N506dUqbNm2KjgMAAAAAAAAAAAAAAAAAAAAAAAAAAACfe+WiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCnaezYsenYsWNGjRqVOXPmZOnSpamvr88FF1yQV155peh4AAAAAAAAAAAAAAAAAAAAAAAAAAAA8LlTLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJpatWqV2bNnp1u3bjnxxBPTp0+fnHHGGVm/fn3atGlTdDwAAAAAAAAAAAAAAAAAAAAAAAAAAAD43ClVKpVK0SEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqE7logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUL3KRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHqViw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPUqFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOpVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANWrXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKpXuegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSvctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhe5aIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFC9ykUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB6lYsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1+n+qeZTFqwXRSQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 12000x800 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Signal Count\n", + "0 Green 1\n", + "1 PickSuccess 1\n", + "2 PlaceSuccess 1\n", + "3 Sensor 1\n", + "Transitionen: 46\n", + "Events: 4\n", + "Sonstige: 42\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Time</th>\n", + " <th>Type</th>\n", + " <th>Node</th>\n", + " <th>Arguments</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.000</td>\n", + " <td>signalChanged</td>\n", + " <td>SensorNode</td>\n", + " <td>Sensor true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>9.138</td>\n", + " <td>serviceClientSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService-SensorCall</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>9.156</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>9.168</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>GetSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>9.297</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>ProcessSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>9.337</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>9.429</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>TransitionSafe</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>9.493</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService SensorResponse</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>18.093</td>\n", + " <td>signalChanged</td>\n", + " <td>SelectorNode</td>\n", + " <td>Green true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>18.099</td>\n", + " <td>transitionFired</td>\n", + " <td>SelectorNode</td>\n", + " <td>SortGreen</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>18.205</td>\n", + " <td>topicSend</td>\n", + " <td>SelectorNode</td>\n", + " <td>RightCellTopic GreenOut</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>18.247</td>\n", + " <td>topicReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>RightCellTopic R-AwaitingControl</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>18.336</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>getControlService-R-AwaitingControl</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>18.396</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>getControlService GetControlIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>18.440</td>\n", + " <td>transitionFired</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>Get-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>18.597</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>getControlService GetControlOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>18.713</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>pickService-R-Ready</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>18.736</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>getControlService R-Ready</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18.736</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>pickService PickInput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>18.783</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>Pick-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>26.725</td>\n", + " <td>signalChanged</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PickSuccess true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>26.737</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PickingSuccess-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>26.785</td>\n", + " <td>serviceServerSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>pickService PickOutput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>26.908</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>placeService-R-ObjectPicked</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>26.928</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>pickService R-ObjectPicked</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>26.964</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>placeService PlaceInput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>27.004</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>Place-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>38.210</td>\n", + " <td>signalChanged</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PlaceSuccess true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>38.214</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>SafeToSensorCall</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>38.311</td>\n", + " <td>serviceClientSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService-SensorCall</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>38.318</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>38.367</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>GetSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>38.399</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>ProcessSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>38.414</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>38.460</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>TransitionSafe</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>38.520</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PlacingSuccess-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>38.555</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService SensorResponse</td>\n", + " </tr>\n", + " <tr>\n", + " <th>37</th>\n", + " <td>38.566</td>\n", + " <td>serviceServerSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>placeService PlaceOutput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>38</th>\n", + " <td>38.656</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>endControlService-R-ObjectPlaced</td>\n", + " </tr>\n", + " <tr>\n", + " <th>39</th>\n", + " <td>38.658</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>placeService R-ObjectPlaced</td>\n", + " </tr>\n", + " <tr>\n", + " <th>40</th>\n", + " <td>38.664</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>endControlService EndControlIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>41</th>\n", + " <td>38.695</td>\n", + " <td>transitionFired</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>End-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>42</th>\n", + " <td>38.698</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>endControlService EndControlOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>43</th>\n", + " <td>38.749</td>\n", + " <td>topicSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>UITopic R-Done</td>\n", + " </tr>\n", + " <tr>\n", + " <th>44</th>\n", + " <td>38.752</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>endControlService R-Done</td>\n", + " </tr>\n", + " <tr>\n", + " <th>45</th>\n", + " <td>38.846</td>\n", + " <td>topicReceive</td>\n", + " <td>FeedbackNode</td>\n", + " <td>UITopic FeedbackIn</td>\n", + " </tr>\n", + " <tr>\n", + " <th>46</th>\n", + " <td>38.885</td>\n", + " <td>transitionFired</td>\n", + " <td>FeedbackNode</td>\n", + " <td>ShowFeedback</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Time Type Node \\\n", + "0 0.000 signalChanged SensorNode \n", + "1 9.138 serviceClientSend ExecutorNode \n", + "2 9.156 serviceServerReceive SensorNode \n", + "3 9.168 transitionFired SensorNode \n", + "4 9.297 transitionFired SensorNode \n", + "5 9.337 serviceServerSend SensorNode \n", + "6 9.429 transitionFired ExecutorNode \n", + "7 9.493 serviceClientReceive ExecutorNode \n", + "8 18.093 signalChanged SelectorNode \n", + "9 18.099 transitionFired SelectorNode \n", + "10 18.205 topicSend SelectorNode \n", + "11 18.247 topicReceive RightControllerNode \n", + "12 18.336 serviceClientSend RightControllerNode \n", + "13 18.396 serviceServerReceive SynchronizerNode \n", + "14 18.440 transitionFired SynchronizerNode \n", + "15 18.597 serviceServerSend SynchronizerNode \n", + "16 18.713 serviceClientSend RightControllerNode \n", + "17 18.736 serviceClientReceive RightControllerNode \n", + "18 18.736 serviceServerReceive ExecutorNode \n", + "19 18.783 transitionFired ExecutorNode \n", + "20 26.725 signalChanged ExecutorNode \n", + "21 26.737 transitionFired ExecutorNode \n", + "22 26.785 serviceServerSend ExecutorNode \n", + "23 26.908 serviceClientSend RightControllerNode \n", + "24 26.928 serviceClientReceive RightControllerNode \n", + "25 26.964 serviceServerReceive ExecutorNode \n", + "26 27.004 transitionFired ExecutorNode \n", + "27 38.210 signalChanged ExecutorNode \n", + "28 38.214 transitionFired ExecutorNode \n", + "29 38.311 serviceClientSend ExecutorNode \n", + "30 38.318 serviceServerReceive SensorNode \n", + "31 38.367 transitionFired SensorNode \n", + "32 38.399 transitionFired SensorNode \n", + "33 38.414 serviceServerSend SensorNode \n", + "34 38.460 transitionFired ExecutorNode \n", + "35 38.520 transitionFired ExecutorNode \n", + "36 38.555 serviceClientReceive ExecutorNode \n", + "37 38.566 serviceServerSend ExecutorNode \n", + "38 38.656 serviceClientSend RightControllerNode \n", + "39 38.658 serviceClientReceive RightControllerNode \n", + "40 38.664 serviceServerReceive SynchronizerNode \n", + "41 38.695 transitionFired SynchronizerNode \n", + "42 38.698 serviceServerSend SynchronizerNode \n", + "43 38.749 topicSend RightControllerNode \n", + "44 38.752 serviceClientReceive RightControllerNode \n", + "45 38.846 topicReceive FeedbackNode \n", + "46 38.885 transitionFired FeedbackNode \n", + "\n", + " Arguments \n", + "0 Sensor true \n", + "1 sensorService-SensorCall \n", + "2 sensorService SensorIn-INSTANCE-0 \n", + "3 GetSensorData-INSTANCE-0 \n", + "4 ProcessSensorData-INSTANCE-0 \n", + "5 sensorService SensorOut-INSTANCE-0 \n", + "6 TransitionSafe \n", + "7 sensorService SensorResponse \n", + "8 Green true \n", + "9 SortGreen \n", + "10 RightCellTopic GreenOut \n", + "11 RightCellTopic R-AwaitingControl \n", + "12 getControlService-R-AwaitingControl \n", + "13 getControlService GetControlIn-INSTANCE-0 \n", + "14 Get-INSTANCE-0 \n", + "15 getControlService GetControlOut-INSTANCE-0 \n", + "16 pickService-R-Ready \n", + "17 getControlService R-Ready \n", + "18 pickService PickInput-INSTANCE-0 \n", + "19 Pick-INSTANCE-0 \n", + "20 PickSuccess true \n", + "21 PickingSuccess-INSTANCE-0 \n", + "22 pickService PickOutput-INSTANCE-0 \n", + "23 placeService-R-ObjectPicked \n", + "24 pickService R-ObjectPicked \n", + "25 placeService PlaceInput-INSTANCE-0 \n", + "26 Place-INSTANCE-0 \n", + "27 PlaceSuccess true \n", + "28 SafeToSensorCall \n", + "29 sensorService-SensorCall \n", + "30 sensorService SensorIn-INSTANCE-0 \n", + "31 GetSensorData-INSTANCE-0 \n", + "32 ProcessSensorData-INSTANCE-0 \n", + "33 sensorService SensorOut-INSTANCE-0 \n", + "34 TransitionSafe \n", + "35 PlacingSuccess-INSTANCE-0 \n", + "36 sensorService SensorResponse \n", + "37 placeService PlaceOutput-INSTANCE-0 \n", + "38 endControlService-R-ObjectPlaced \n", + "39 placeService R-ObjectPlaced \n", + "40 endControlService EndControlIn-INSTANCE-0 \n", + "41 End-INSTANCE-0 \n", + "42 endControlService EndControlOut-INSTANCE-0 \n", + "43 UITopic R-Done \n", + "44 endControlService R-Done \n", + "45 UITopic FeedbackIn \n", + "46 ShowFeedback " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tracefile = 'first-real-trace.txt'\n", + "with open(tracefile) as f:\n", + " data = list(map(lambda d: tuple(d.split(' ', 3)), f.read().strip().split('\\n')))\n", + "\n", + "beginning_time = int(data[0][0])/1e3\n", + "time_duration = int(data[-1][0])/1e3 - beginning_time\n", + "data = [(int(d[0])/1e3 - beginning_time,d[1],d[2],d[3]) for d in data]\n", + "\n", + "# signal change events\n", + "events = []\n", + "for (ts,type,node,args) in data:\n", + " if (type == 'signalChanged'):\n", + " signal,value = args.split(' ',1)\n", + " value = int(value == 'true') # Convert to int (0 or 1)\n", + " events += [(ts,signal,value)]\n", + "\n", + "# topic events\n", + "channel_times = []\n", + "channel_names = []\n", + "for (ts,type,node,args) in data:\n", + " if (type == 'topicReceive'):\n", + " signal, value = args.split(' ',1)\n", + " channel_times += [ts]\n", + " channel_names += [signal]\n", + "\n", + "# transition callback events\n", + "callback_times = []\n", + "callback_names = []\n", + "for (ts,type,node,args) in data:\n", + " if (type == 'transitionFired'):\n", + " callback_times += [ts]\n", + " if '-INSTANCE-' in args:\n", + " args = args.replace('-INSTANCE-','[') + ']'\n", + " callback_names += [args]\n", + "\n", + "# service call events\n", + "service_times = []\n", + "service_labels = []\n", + "service_names = []\n", + "service_instances = []\n", + "service_isEntries = []\n", + "current_calls = {}\n", + "calls = []\n", + "for (ts,type,node,args) in data:\n", + " if (type.startswith('serviceServer')):\n", + " service_times += [ts]\n", + " service,name = args.split(' ', 1)\n", + " _,_,instance = name.split('-',2)\n", + " service_names += [service]\n", + " service_instances += [instance]\n", + " isEntry = type == 'serviceServerReceive'\n", + " service_isEntries += [isEntry]\n", + " c_or_r = 'CALL' if isEntry else 'RETURN'\n", + " service_labels += [f\"{c_or_r} {service} (Instance {instance})\"]\n", + " if isEntry:\n", + " current_calls[(service,instance)] = ts\n", + " else:\n", + " calls += [(service,instance,current_calls[(service,instance)],ts)]\n", + "\n", + "# Create separate plots for each input signal\n", + "unique_signals = list(set(signal for _, signal, _ in events))\n", + "# hard code order and color\n", + "unique_signals = ['Green', 'Blue', 'Red', 'Sensor', 'PlaceSuccess', 'PickSuccess', 'Stop']\n", + "colors = {'Stop': 'tab:olive', 'PickSuccess': 'tab:orange', 'Green': 'tab:green', 'Red': 'tab:red',\n", + " 'PlaceSuccess': 'tab:brown', 'Blue': '#8c564b', 'Sensor': 'tab:olive',\n", + " 'Stop': 'tab:purple'}\n", + "\n", + "fig, ax = plt.subplots(constrained_layout=True,figsize=(120, 8))\n", + "\n", + "for signal in unique_signals:\n", + " signal_events = [(step, value) for step, s, value in events if s == signal]\n", + " signal_events.insert(0, (0, 0)) # every signal starts off\n", + " signal_events.append((len(data), signal_events[-1][1])) # and it ends with the value of the last change\n", + " steps, values = map(list, (zip(*signal_events)))\n", + " values = list(map(lambda x: x*(unique_signals.index(signal) + 1), values))\n", + " plt.step(steps, values, where='post', color=colors[signal])\n", + "\n", + "plt.xlabel('Time')\n", + "x1 = list(range(1, len(unique_signals) + 1))[:-1]\n", + "labels = unique_signals[:-1]\n", + "\n", + "topicheight = -1.3\n", + "\n", + "ax.vlines(channel_times, 0, topicheight, color=\"tab:grey\") # The vertical stems.\n", + "ax.plot(channel_times, np.zeros_like(channel_times), \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + "\n", + "# annotate lines\n", + "for d, r, i in zip(channel_times, channel_names, range(len(channel_names))):\n", + " ax.annotate(r, xy=(d, topicheight),\n", + " xytext=(0, 0), textcoords=\"offset points\",\n", + " horizontalalignment=\"center\",\n", + " verticalalignment=\"top\",bbox=labelprops)\n", + "\n", + "callbackheight = -3.5\n", + "callbackheights = []\n", + "current_indent = 0\n", + "i_max = 10\n", + "max_period = 5 # s\n", + "for i in range(len(callback_times)):\n", + " if i == 0 or current_indent == i_max or (callback_times[i] - callback_times[i-1] > max_period):\n", + " current_indent = 0\n", + " else:\n", + " current_indent += 1\n", + " callbackheights += [callbackheight - current_indent*.8]\n", + "\n", + "print(callback_times)\n", + "print(callbackheights)\n", + "\n", + "ax.vlines(callback_times, 0, callbackheights, color=\"tab:grey\") # The vertical stems.\n", + "ax.plot(callback_times, np.zeros_like(callback_times), \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + "\n", + "for d, r, i in zip(callback_times, callback_names, range(len(callback_names))):\n", + " ax.annotate(r, xy=(d, callbackheights[i]),\n", + " xytext=(0,0), textcoords=\"offset points\",\n", + " horizontalalignment=\"center\",\n", + " verticalalignment=\"top\",bbox=labelprops)\n", + "\n", + "baseserviceheight = 9.5\n", + "serviceheight = 9.5\n", + "\n", + "ki = 1\n", + "previous_start = 0\n", + "previous_end = 0\n", + "for (signal,instance,start,end) in calls: \n", + " if signal == \"Sensor\":\n", + " ax.vlines([start,end], 0, 8, color=\"tab:gray\") # The vertical stems.\n", + " ax.plot([start,end], [0,0], \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + " draw_brace(ax, (start, end), 8, f'{signal}[{instance}]')\n", + " continue\n", + " elif start < previous_end:\n", + " serviceheight+=1.5\n", + " current_serviceheight = serviceheight\n", + " elif start > previous_end:\n", + " current_serviceheight = baseserviceheight\n", + " elif end > previous_end:\n", + " current_serviceheight = serviceheight\n", + " else:\n", + " pass\n", + " ax.vlines([start,end], 0, current_serviceheight, color=\"tab:gray\") # The vertical stems.\n", + " ax.plot([start,end], [0,0], \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + "\n", + " draw_brace(ax, (start, end), current_serviceheight, f'{signal}[{instance}]')\n", + "\n", + " previous_start = start\n", + " previous_end = end\n", + " ki += 1\n", + "\n", + "for signal in unique_signals:\n", + " signal_events = [(step, value) for step, s, value in events if s == signal]\n", + " signal_events.insert(0, (0, 0)) # every signal starts off\n", + " signal_events.append((len(data), signal_events[-1][1])) # and it ends with the value of the last change\n", + " steps, values = map(list, (zip(*signal_events)))\n", + " values = list(map(lambda x: x*(unique_signals.index(signal) + 1), values))\n", + " plt.step(steps, values, where='post', color=colors[signal])\n", + "\n", + "plt.yticks(x1, labels)\n", + "plt.xlim(data[0][0] - 0.01*time_duration, data[-1][0] + 0.05*time_duration)\n", + "\n", + "ax.text(-3,3,\"Input Signals\",rotation='vertical')\n", + "ax.text(-3,11,\"Service Calls\",rotation='vertical')\n", + "ax.text(-0.8,-2,\"Topics\",rotation='vertical')\n", + "ax.text(-1.5,-6,\"Transitions\\nwith\\nHandlers\",rotation='vertical',ma='center')\n", + "\n", + "plt.step([data[0][0] - 0.01*time_duration, data[-1][0] + 0.05*time_duration], [0,0], where='post', color='black')\n", + "\n", + "plt.ylim(-9, serviceheight + 4)\n", + "plt.savefig(\"timeline-real-runtime.pdf\")\n", + "plt.show()\n", + "\n", + "# Create a table showing how often each signal name appears\n", + "signal_counts = pd.DataFrame(events, columns=['Step', 'Signal', 'Value']).groupby('Signal').size().reset_index(name='Count')\n", + "print(signal_counts)\n", + "\n", + "print(\"Transitionen: {}\".format(len(data) - 1))\n", + "print(\"Events: {}\".format(len(events)))\n", + "print(\"Sonstige: {}\\n\".format(len(data)-len(events) - 1))\n", + "\n", + "# Convert the 'data' list to a Pandas DataFrame and print it\n", + "data_df = pd.DataFrame(data, columns=['Time','Type', 'Node', 'Arguments'])\n", + "pd.set_option('display.max_rows', None)\n", + "pd.set_option('display.max_columns', None)\n", + "data_df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/tools/timeline/.ipynb_checkpoints/timeline-real-runtime-checkpoint.pdf b/tools/timeline/.ipynb_checkpoints/timeline-real-runtime-checkpoint.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0f2739b760ca5ceaaea58a5c8deabda2fa7a6ffe Binary files /dev/null and b/tools/timeline/.ipynb_checkpoints/timeline-real-runtime-checkpoint.pdf differ diff --git a/tools/timeline/.ipynb_checkpoints/trace-checkpoint.txt b/tools/timeline/.ipynb_checkpoints/trace-checkpoint.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6840f3a39c79a9d7b481c78a02dffd2b81d025c --- /dev/null +++ b/tools/timeline/.ipynb_checkpoints/trace-checkpoint.txt @@ -0,0 +1,47 @@ +1709654536226 signalChanged SensorNode Sensor true +1709654545364 serviceClientSend ExecutorNode sensorService-SensorCall +1709654545382 serviceServerReceive SensorNode sensorService SensorIn-INSTANCE-0 +1709654545394 transitionFired SensorNode GetSensorData-INSTANCE-0 +1709654545523 transitionFired SensorNode ProcessSensorData-INSTANCE-0 +1709654545563 serviceServerSend SensorNode sensorService SensorOut-INSTANCE-0 +1709654545655 transitionFired ExecutorNode TransitionSafe +1709654545719 serviceClientReceive ExecutorNode sensorService SensorResponse +1709654554319 signalChanged SelectorNode Green true +1709654554325 transitionFired SelectorNode SortGreen +1709654554431 topicSend SelectorNode RightCellTopic GreenOut +1709654554473 topicReceive RightControllerNode RightCellTopic R-AwaitingControl +1709654554562 serviceClientSend RightControllerNode getControlService-R-AwaitingControl +1709654554622 serviceServerReceive SynchronizerNode getControlService GetControlIn-INSTANCE-0 +1709654554666 transitionFired SynchronizerNode Get-INSTANCE-0 +1709654554823 serviceServerSend SynchronizerNode getControlService GetControlOut-INSTANCE-0 +1709654554939 serviceClientSend RightControllerNode pickService-R-Ready +1709654554962 serviceClientReceive RightControllerNode getControlService R-Ready +1709654554962 serviceServerReceive ExecutorNode pickService PickInput-INSTANCE-0 +1709654555009 transitionFired ExecutorNode Pick-INSTANCE-0 +1709654562951 signalChanged ExecutorNode PickSuccess true +1709654562963 transitionFired ExecutorNode PickingSuccess-INSTANCE-0 +1709654563011 serviceServerSend ExecutorNode pickService PickOutput-INSTANCE-0 +1709654563134 serviceClientSend RightControllerNode placeService-R-ObjectPicked +1709654563154 serviceClientReceive RightControllerNode pickService R-ObjectPicked +1709654563190 serviceServerReceive ExecutorNode placeService PlaceInput-INSTANCE-0 +1709654563230 transitionFired ExecutorNode Place-INSTANCE-0 +1709654574436 signalChanged ExecutorNode PlaceSuccess true +1709654574440 transitionFired ExecutorNode SafeToSensorCall +1709654574537 serviceClientSend ExecutorNode sensorService-SensorCall +1709654574544 serviceServerReceive SensorNode sensorService SensorIn-INSTANCE-0 +1709654574593 transitionFired SensorNode GetSensorData-INSTANCE-0 +1709654574625 transitionFired SensorNode ProcessSensorData-INSTANCE-0 +1709654574640 serviceServerSend SensorNode sensorService SensorOut-INSTANCE-0 +1709654574686 transitionFired ExecutorNode TransitionSafe +1709654574746 transitionFired ExecutorNode PlacingSuccess-INSTANCE-0 +1709654574781 serviceClientReceive ExecutorNode sensorService SensorResponse +1709654574792 serviceServerSend ExecutorNode placeService PlaceOutput-INSTANCE-0 +1709654574882 serviceClientSend RightControllerNode endControlService-R-ObjectPlaced +1709654574884 serviceClientReceive RightControllerNode placeService R-ObjectPlaced +1709654574890 serviceServerReceive SynchronizerNode endControlService EndControlIn-INSTANCE-0 +1709654574921 transitionFired SynchronizerNode End-INSTANCE-0 +1709654574924 serviceServerSend SynchronizerNode endControlService EndControlOut-INSTANCE-0 +1709654574975 topicSend RightControllerNode UITopic R-Done +1709654574978 serviceClientReceive RightControllerNode endControlService R-Done +1709654575072 topicReceive FeedbackNode UITopic FeedbackIn +1709654575111 transitionFired FeedbackNode ShowFeedback diff --git a/tools/timeline/timeline-real-runtime.ipynb b/tools/timeline/timeline-real-runtime.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ef3bde610283f030eac674fb0c068ebe2fe26476 --- /dev/null +++ b/tools/timeline/timeline-real-runtime.ipynb @@ -0,0 +1,764 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/sebastian/.local/lib/python3.10/site-packages/matplotlib/projections/__init__.py:63: UserWarning: Unable to import Axes3D. This may be due to multiple versions of Matplotlib being installed (e.g. as a system package and as a pip package). As a result, the 3D projection is not available.\n", + " warnings.warn(\"Unable to import Axes3D. This may be due to multiple versions of \"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[9.167999982833862, 9.29699993133545, 9.428999900817871, 18.098999977111816, 18.43999981880188, 18.782999992370605, 26.736999988555908, 27.003999948501587, 38.21399998664856, 38.36699986457825, 38.3989999294281, 38.46000003814697, 38.519999980926514, 38.6949999332428, 38.88499999046326]\n", + "[-3.5, -4.3, -5.1, -3.5, -4.3, -5.1, -3.5, -4.3, -3.5, -4.3, -5.1, -5.9, -6.7, -7.5, -8.3]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAALusAAAMrCAYAAAB84MEtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZSU5Zk34F8VLc0iVUIUW0GFSNyiQRlHRceBKAZXhkTRTzGM+4qKBo2OmrjE7ZsgiDpqDonguEyM0ajRqLighhjjhhsmaiLiQoxGqQpiFKG+P+akvyFIQkNjUc51ndOnu9/nvu/nV+3zR9l0vVWo1Wq1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMByKNY7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNq1jvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0rmK9AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQuIr1DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4yrWOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjatY7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANK5ivQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Lia6h0AAAAa1aJFi/Lmm2+mW7duKRQK9Y4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO2qVqvlT3/6U9Zdd90Ui8Wl1jV9ipkAAOAz5c0338x6661X7xgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsFK99tpr6d2791LXmz7FLAAA8JnSrVu3JP/9pLtUKtU5DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0r2q1mvXWWy/dunX7m3VNn1IeAAD4zCkUCkmSUqmUUqlU5zQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsHIUCoW/uV78lHIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BlUrHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpXsd4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhcxXoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBxFesdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDGVax3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaV7HeAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoXMV6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgcRXrHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxlWsdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlex3gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFzFegcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHEV6x0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMZVrHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpXsd4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhcxXoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBxFesdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDGVax3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaV7HeAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoXMV6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgcRXrHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxlWsdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlex3gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFzFegcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHEV6x0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMZVrHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpXsd4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhcxXoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBxFesdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDGVax3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaV7HeAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoXMV6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgcRXrHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxlWsdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlex3gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFzFegcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHEV6x0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMZVrHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpXcUUHLFy4MDNmzMh7773XHnkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCDFtjaMGTMm3//+95MkCxcuzKBBgzJgwICst956mTZtWnvnAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAVVmxrw0033ZT+/fsnSW6//fa88sor+fWvf50TTzwxp59+ersHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDVVWxrwzvvvJOWlpYkyZ133pkRI0Zko402yiGHHJJnn3223QMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOoqtrVh7bXXzsyZM7Nw4cLcdddd2WWXXZIk8+fPT4cOHdo9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrrqa2Nhx88MHZd999s84666RQKGTIkCFJkkcffTSbbLJJuwcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNXV1NaGs846K5tvvnlee+21jBgxIs3NzUmSDh065NRTT233gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsugq1Wq1W7xAAANCIqtVqyuVyKpVKSqVSveMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLuqVqspl8upVCoplUpLrWtalmETJ05c5o2PP/74Za4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLEVarVa7e8V9e3bd9mGFQr53e9+t8KhAACgEVSr1ZTL5VQqlZRKpXrHAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB2Va1WUy6XU6lUUiqVllrXtCzDXnnllXYLBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBnR7HeAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoXE3LUnTSSSct88CLL754ucMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FialqXoqaeeWqZhhUJhhcIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FialqXogQceWNk5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhAxXoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBxNS1P0+OPP54bb7wxs2fPzkcffbTY2s0339wuwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABY9RXb2vBf//Vf2X777fPCCy/klltuyYIFC/L888/n/vvvT7lcXhkZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhFFdvacP7552f8+PG5/fbb07Fjx1xyySX59a9/nX333Tfrr7/+ysgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCqq2NaG3/72t9ljjz2SJB07dsz777+fQqGQE088Md/73vfaPSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq65iWxu6d++eP/3pT0mSXr165bnnnkuSzJ07N/Pnz2/fdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs0pra2vDP//zPmTp1arbYYouMGDEiJ5xwQu6///5MnTo1O++888rICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAqqqmtDZdddln+/Oc/J0lOP/30rLbaavnFL36RvffeO2eccUa7BwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABg1VWo1Wq1eocAAIBGVK1WUy6XU6lUUiqV6h0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANpVtVpNuVxOpVJJqVRaal1xWQe++eabGTt2bKrV6hJrlUolJ598ct56663lSwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQyoua+HFF1+carWaUqm0xFq5XM6f/vSnXHzxxe0aDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBVW3FZC++6666MGjVqqeujRo3KT3/603YJBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBjKC5r4SuvvJL1119/qeu9e/fOrFmz2iMTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2iuKyFnTt3zqxZs5a6PmvWrHTu3Lk9MgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAKqtPnz6ZMGFCvWN8agqFQn7yk5+067xCoZA11lijTX0HHXRQa2975gEAAAAAAAAAYMUVl7Vw2223zX/+538udf2aa67JNtts0y6hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/75Zbbsl2222Xcrmcbt265Ytf/GLGjBnzqew9Z86c7Lbbbu068+qrr86LL7642LVp06ZlwIABaW5uTr9+/TJ58uTF1i+55JLMmTOnXXMAAAAAAAAAANA+mpa1cOzYsdlll11SLpdz8sknZ+21106SvPXWW/m///f/ZvLkybnnnntWWlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+N/ovvvuy3777Zfzzjsvw4YNS6FQyMyZMzN16tQVmrtgwYKsttpqf7eupaVlhfb5JGussUZ69uzZ+v0rr7ySPfbYI0cddVSuu+663HfffTnssMOyzjrrZOjQoUmScrmccrnc7lkAAAAAAAAAAFhxxWUt/PKXv5zLL788l112WdZdd9107949PXr0yLrrrpvLL788l156aXbaaaeVmRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVrrBgwdn9OjRGT16dMrlctZcc82ceeaZqdVqn1h/8cUXZ4sttkjXrl2z3nrr5Zhjjsm8efMWq5k+fXoGDx6cLl26pHv37hk6dGjee++9JMmiRYtywQUXpG/fvuncuXP69++fm266qbX39ttvzw477JCTTz45G2+8cTbaaKMMHz48l19++WJ73HrrrRkwYEA6deqUz3/+8zn77LPz8ccft64XCoVcccUVGTZsWLp27Zpzzz03vXv3zhVXXLHYnKeeeirFYjGvvvpqa99PfvKT1vXXX389+++/f3r06JGuXbtm6623zqOPPrrMOT7JlVdemb59+2bcuHHZdNNNM3r06Oyzzz4ZP3783+wDAAAAAAAAAGDV0NSW4iOPPDJ77rlnbrzxxrz88sup1WrZaKONss8++6R3794rKyMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfKqmTJmSQw89NL/61a/y+OOP54gjjsj666+fww8/fInaYrGYiRMnpm/fvvnd736XY445Jqecckr+4z/+I0kyY8aM7LzzzjnkkENyySWXpKmpKQ888EAWLlyYJLngggty7bXX5sorr8wXvvCFPPTQQznwwAOz1lprZdCgQWlpacn111+f5557Lptvvvkn5n344YczatSoTJw4MTvuuGN++9vf5ogjjkiSfPvb326tO+uss3LhhRdmwoQJaWpqygcffJDrr78+Rx99dGvNddddlx122CEbbLDBEvvMmzcvgwYNSq9evXLbbbelpaUlTz75ZBYtWtSmHH/tkUceyZAhQxa7NnTo0IwZM2apPQAAAAAAAAAArDoKtVqtVu8QAADQiKrVasrlciqVSkqlUr3jAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtZPDgwfnDH/6Q559/PoVCIUly6qmn5rbbbsvMmTPTp0+fjBkzJmPGjPnE/ptuuilHHXVU3nnnnSTJAQcckNmzZ+fnP//5ErUffvhhevTokXvvvTcDBw5svX7YYYdl/vz5uf766/P+++9n3333zZ133pkNNtgg2223Xb7yla9k5MiRaW5uTpIMGTIkO++8c0477bTWGddee21OOeWUvPnmm0mSQqGQMWPGZPz48a01M2bMyIABAzJr1qysv/76WbRoUdZff/2cccYZOeqoo1r7brnllgwfPjzf+973Mnbs2MyaNSs9evRY4vEsa46/zPuLjTbaKAcffPBifXfeeWf22GOPzJ8/P507d269/kn9AAAAAAAAAACsHNVqNeVyOZVKJaVSaal1xU8xEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0hO222y6FQqH1+4EDB+all17KwoULl6i99957s/POO6dXr17p1q1bvv71r+ePf/xj5s+fnySZMWNGdt5550/c5+WXX878+fOzyy67ZPXVV2/9uOaaa/Lb3/42SdK1a9fccccdefnll3PGGWdk9dVXzze+8Y1ss802rXs8/fTTOeeccxabcfjhh2fOnDmtNUmy9dZbL7b/lltumU033TTXX399kuTBBx/MH/7wh4wYMeIT886YMSNbbbVVevTo8Ynry5oDAAAAAAAAAIDPlqZ6BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACARjVr1qzsueeeOfroo3PeeeelR48e+fnPf55DDz00H330Ubp06ZLOnTsvtX/evHlJkjvuuCO9evVabK25uXmx7zfccMNsuOGGOeyww3L66adno402yg9/+MMcfPDBmTdvXs4+++x87WtfW2KPTp06tX7dtWvXJdZHjhyZ66+/Pqeeemquv/767Lrrrvnc5z73iXn/1mP5y+NZlhx/raWlJW+99dZi1956662USqW/uycAAAAAAAAAAPXXVO8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCqefTRRxf7/pe//GW+8IUvpEOHDotdf+KJJ7Jo0aKMGzcuxWIxSXLjjTcuVvOlL30p9913X84+++wl9tlss83S3Nyc2bNnZ9CgQcucr0+fPunSpUvef//9JMmAAQPym9/8Jv369VvmGX9xwAEH5IwzzsgTTzyRm266KVdeeeVSa7/0pS9l0qRJeffdd9OjR48l1pc3x8CBA3PnnXcudm3q1KkZOHBgm+YAAAAAAAAAAFAfTfUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrmtmzZ+ekk07KkUcemSeffDKXXnppxo0bt0Rdv379smDBglx66aXZa6+9Mn369Fx55ZWL1Zx22mnZYostcswxx+Soo45Kx44d88ADD2TEiBFZc801M3bs2Jx44olZtGhR/umf/imVSiXTp09PqVTKv/7rv+ass87K/Pnzs/vuu2eDDTbI3LlzM3HixCxYsCC77LJLkuRb3/pW9txzz6y//vrZZ599UiwW8/TTT+e5557Ld77znb/5WPv06ZPtt98+hx56aBYuXJhhw4YttXb//ffP+eefn+HDh+eCCy7IOuusk6eeeirrrrtuBg4cuNw5jjrqqFx22WU55ZRTcsghh+T+++/PjTfemDvuuONvZgcAAAAAAAAAYNVQXJ6muXPnZtKkSTnttNPy7rvvJkmefPLJvPHGG+0aDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqYdSoUfnggw+yzTbb5Nhjj80JJ5yQI444Yom6/v375+KLL85FF12UzTffPNddd10uuOCCxWo22mij3HPPPXn66aezzTbbZODAgbn11lvT1NSUJDn33HNz5pln5oILLsimm26aXXfdNXfccUf69u2bJBk0aFB+97vfZdSoUdlkk02y22675fe//33uueeebLzxxkmSoUOH5qc//Wnuueee/OM//mO22267jB8/PhtssMEyPd6RI0fm6aefzle/+tV07tx5qXUdO3bMPffck549e2b33XfPFltskQsvvDAdOnRYoRx9+/bNHXfckalTp6Z///4ZN25cJk2alKFDhy5TfgAAAAAAAAAA6qtQq9VqbWl45plnMmTIkJTL5cyaNSu/+c1v8vnPfz5nnHFGZs+enWuuuWZlZQUAgFVKtVpNuVxOpVJJqVSqdxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJ0MHjw4W265ZSZMmFDvKJ9JhUIht9xyS4YPH16XfgAAAAAAAAAAll21Wk25XE6lUkmpVFpqXbGtg0866aQcdNBBeemll9KpU6fW67vvvnseeuih5UsLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyvsf/++6d3795t6jnqqKOy+uqrr6REAAAAAAAAAACsiKa2Njz22GO56qqrlrjeq1ev/P73v2+XUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAZ9NLL72UJOnQoUOb+s4555yMHTs2SbLOOuu0ey4AAAAAAAAAAJZfU1sbmpubU61Wl7j+4osvZq211mqXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQL9OmTat3hM+0fv36LVdfz54907Nnz3ZOAwAAAAAAAABAeyi2tWHYsGE555xzsmDBgiRJoVDI7Nmz881vfjN77713uwcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbfokWL8tFHH9U7BgAAAAAAAAAAn2HFtjaMGzcu8+bNS8+ePfPBBx9k0KBB6devX7p165bzzjtvZWQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbTxIkTs9VWW+XNN9+sdxQAAAAAAAAAAD6jCrVarbY8jdOnT8/TTz+defPmZcCAARkyZEh7ZwMAgFVatVpNuVxOpVJJqVSqdxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCX8+c9/znrrrZd33nknp556ai644IJ6RwIAAAAAAAAAoIFUq9WUy+VUKpWUSqWl1hVqtVrtU8wFAACfGcv6pBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoF4mT56cQw45JHvttVemT5+e1157LZ07d653LAAAAAAAAAAAGkS1Wk25XE6lUkmpVFpqXbGtg48//vhMnDhxieuXXXZZxowZ09ZxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBKUKvVMnHixOy+++4ZN25c3n333dxwww31jgUAAAAAAAAAwGdQsa0NP/7xj7PDDjsscX377bfPTTfd1C6hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAVM3369Dz11FM57rjj0q9fv+y+++6ZOHFiarVavaMBAAAAAAAAAPAZU2xrwx//+MeUy+UlrpdKpbzzzjvtEgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWDETJ07MxhtvnF122SVJcvzxx+fpp5/Oww8/XOdkAAAAAAAAAAB81hTb2tCvX7/cddddS1z/2c9+ls9//vPtEgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWH6vv/56br755hx33HEpFotJkl122SWbbLJJLr300jqnAwAAAAAAAADgs6aprQ0nnXRSRo8enbfffjs77bRTkuS+++7LuHHjMmHChPbOBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC00RVXXJGuXbtm1KhRrdcKhUKOO+64HH/88Zk9e3bWX3/9OiYEAAAAAAAAAOCzpFCr1Wptbbriiity3nnn5c0330yS9OnTJ2edddZif/QCAACfddVqNeVyOZVKJaVSqd5xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSJB988EHWW2+9HHjggZkwYcJia/PmzUuvXr1yzDHH5IILLqhPQAAAAAAAAAAAGka1Wk25XE6lUkmpVFpqXaFWq9WWd5O33347nTt3zuqrr768IwAAoGEt65NuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBP09VXX51DDz00L774Yvr167fE+oknnphrrrkmr7/+ejp37lyHhAAAAAAAAAAANIpqtZpyuZxKpZJSqbTUuuKKbLLWWmtl9dVXX5ERAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA7qdVqufTSS7P77runX79+n1hz7LHH5r333ssNN9zwKacDAAAAAAAAAOCzqlCr1Wp/r2jAgAG577770r1792y11VYpFApLrX3yySfbNSAAAKyqqtVqyuVyKpVKSqVSveMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOTnP/95dtxxx9x99935yle+stS6vfbaK6+99lqeeuqpFAqFTzEhAAAAAAAAAACNpFqtplwup1KppFQqLbWuaVmG/cu//Euam5tbv/aHKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw6li0aFFuueWWnH766dl4440zZMiQv1l/3HHHZejQoTnkkENyxhlnZMMNN/yUkgIAAAAAAAAA8FlUqNVqtXqHAACARlStVlMul1OpVFIqleodBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4X2jhwoW58cYbc9555+X555/PzjvvnHHjxqV///5/s69Wq+XSSy/N+eefn3feeScHHHBATj/99Gy88cafUnIAAAAAAAAAABpBtVpNuVxOpVJJqVRaal2hVqvV2jL4sMMOy4EHHpjBgwevaEYAAGhoy/qkGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg76nVavn4449bv/6fnz/pWlvXYFXmnNIonFUagXNKo3BWaQTOKY3AOaVROKs0AueURrFw4cJUq9VUKpXWjzfffDOXX355Xnzxxey2224588wzM3DgwDbN/eCDDzJp0qRcdNFFefPNN7Pvvvtmzz33TLlcTqlUSrlcTrlcTpcuXVIoFJJkic+fdK2ta7Aqc05pFM4qjcA5pVE4qzQC55RG4azSCJxTGoWzyqquUCikqamp3jEAAFgJqtVqyuVyKpVKSqXSUusKtTb+Nda//Mu/5O67785aa62V//N//k8OPPDA9O/ff4UDAwBAo1nWJ90AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH/xxBNPZMKECZk1a1YqlUqq1Wrr50WLFtU7HgAAAAAA0GAKhUKGDRuWM844I1tvvfUKzfrwww9z9dVX56KLLsqsWbPaJyAAAAAAAPC/SqdOnVIqlVIul1s/dtpppxx77LEpl8v1jgcAwHKqVqspl8upVCoplUpLrSvUarVaW4e/9957+dGPfpTrr78+Dz/8cDbZZJOMHDkyBxxwQPr06bMiuQEAoGEs65NuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBHHnkk5557bn72s5+lX79+GThwYMrlckqlUuvnTp06pVAoJMkKf17aNVhVOac0CmeVRuCc0iicVRqBc0qjcFZpBM4pjcA5pREUi8WUSqXWf18ol8vp1q1bmpqa2nWfWq2WP//5z6lWq6lUKqlUKqlWq5k/f37r+v/8/EnX2roGK4szxqfBOWNlc8b4NDhnrGzOGCubM8anwTljZXPG+DQ4Z6xsCxcuzLx58xb7N4a33347d955Z7p06ZITTjghJ5xwQrp3717vqAAAtFG1Wk25XE6lUkmpVFpqXaG2gv/n8frrr+eGG27ID37wg7z00kv5+OOPV2QcAAA0jGV90g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/O/18MMP55xzzsm9996bzTbbLKeffnr222+/dOjQod7RAAAAAAAAAAAAAAAAVro333wz//7v/56rrroqTU1NGT16dE488cSstdZa9Y4GAMAyqlarKZfLqVQqKZVKS60rrsgmCxYsyOOPP55HH300s2bNytprr70i4wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgM+Puu+/OP//zP+ftt9/Oj370ozz77LM54IAD0qFDh3pHAwAAAAAAAAAAAAAA+FSsu+66GT9+fGbNmpWjjz46EydOzI477piFCxfWOxoAAO2sUKvVam1teuCBB3L99dfnxz/+cRYtWpSvfe1rGTlyZHbaaacUCoWVkRMAAFY51Wo15XI5lUolpVKp3nEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFXMV77ylVQqlfzyl79MoVCodxwAAAAAAAAAAAAAAIC6e/TRR7Pddtvl1ltvzbBhw+odBwCAZVCtVlMul1OpVFIqlZZa19TWwb169cq7776bXXfdNd/73vey1157pbm5eYXCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBnyQsvvJCpU6fm2muvTaFQqHccAAAAAAAAAAAAAACAVcK2226b7bbbLpdeemmGDRtW7zgAALSjprY2nHXWWRkxYkTWWGONlRAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrfZZddlpaWlowYMaLeUQAAAAAAAAAAAAAAAFYpxx13XEaOHJmZM2dms802q3ccAADaSbEtxQsWLMjRRx+d119/fWXlAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGNnfu3EyZMiVHHXVUOnbsWO84AAAAAAAAAAAAAAAAq5R99tknLS0tufTSS+sdBQCAdlRsS/Fqq62W9ddfPwsXLlxZeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgoV199dX56KOPcuSRR9Y7CgAAAAAAAAAAAAAAwCqnY8eOOfroo3PNNdfkvffeq3ccAADaSbGtDaeffnr+7d/+Le++++7KyAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWvhwoW57LLLsu+++6alpaXecQAAAAAAAAAAAAAAAFZJRx55ZBYsWJCrr7663lEAAGgnhVqtVmtLw1ZbbZWXX345CxYsyAYbbJCuXbsutv7kk0+2a0AAAFhVVavVlMvlVCqVlEqlescBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFYBt99+e4YNG5ZHH30022yzTb3jAAAAAAAAAAAAAAAArLK+/vWvZ/r06XnppZfSoUOHescBAGApqtVqyuVyKpVKSqXSUuua2jp4+PDhK5ILAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6zLr300my77bbZZptt6h0FAAAAAAAAAAAAAABglXb88cfn2muvzR133JFhw4bVOw4AACuoUKvVavUOAQAAjaharaZcLqdSqaRUKtU7DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQZzNnzswXv/jFXHvttRk5cmS94wAAAAAAAAAAAAAAAKzyBg4cmK5du+bee++tdxQAAJaiWq2mXC6nUqmkVCotta64PMPnzp2bSZMm5bTTTsu7776bJHnyySfzxhtvLF9aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhwl112WVpaWjJixIh6RwEAAAAAAAAAAAAAAGgI559/flZbbbW8+uqr9Y4CAMAKamprwzPPPJMhQ4akXC5n1qxZOfzww9OjR4/cfPPNmT17dq655pqVkRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVllz587NlClTcsopp6Rjx471jgMAAAAAAAAAAAAAANAQBg8enB133DGFQqHeUQAAWEHFtjacdNJJOeigg/LSSy+lU6dOrdd33333PPTQQ+0aDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAawQ9+8IMsWLAgRx55ZL2jAAAAAAAAAAAAAAAANIxCoZBarZYFCxakVqvVOw4AACug2NaGxx577BNfnNurV6/8/ve/b5dQAAAAAAAAAAAAAAAAwGfT4MGDM2bMmHadVygUUigUMmPGjGXumzx5cmtfe+YBAAAAAAAAAACAv5g8eXLWWGONesdIkkybNi2FQiFz585t13mFQiHDhw9vU2+fPn1ae9srDwAAAMDS9OnTJxMmTFim2lXp9zmfpFAo5Cc/+Um7zisUCm1+zAcddFBrb3vmAQAAAPis2GCDDXLaaaelpaWl3lEAAAAAAAAAAAAAAACWyW9+85vMnj17ufvPOuusbLnllovNe/zxx/P4449n/vz5yzxn7ty5ee655/LEE0+sUJ7lNWvWrDa/X/rK5H4jAECjKra1obm5OdVqdYnrL774YtZaa612CQUAAAAAAAAAAAAAAACsPE8//XSGDRuWnj17plOnTunTp0/222+//OEPf1jpe998880599xz23Xm4Ycfnjlz5mTzzTdvvTZ79uzsscce6dKlS3r27JmTTz45H3/8cev6fvvtlzlz5mTgwIHtmgUAAAAAAAAAAIDlN3ny5KW+UcfLL7+cgw8+OL17905zc3P69u2b/fffP48//ni7ZujTp08mTJjQrjP/YuHChbnwwguzySabpHPnzunRo0e23XbbTJo0aaXs9z9tv/32mTNnTsrlcrvO/c1vfpPJkycvdu3yyy9Pnz590qlTp2y77bb51a9+tdj6Y489lh//+MftmgMAAABgaR577LEcccQR7TbvlltuyXbbbZdyuZxu3brli1/8YsaMGdNu8/+WOXPmZLfddmvXmVdffXVefPHFxa5NmzYtAwYMSHNzc/r167fE738uueSSzJkzp11zAAAAAHyW7L333jn77LPrHQMAAAAAAAAAAAAAAGgw9Xzv8Q033DC9evVq15nNzc256aabMmDAgHTq1CktLS3Zaaedctlll+WJJ57IjBkz8tprr6VWq7X2fO5zn0v//v3TtWvXZd7noIMOyvDhw9s1+//kfiPuNwIAtF2xrQ3Dhg3LOeeckwULFiRJCoVCZs+enW9+85vZe++92z0gAAAAAAAAAAAAAAAA0D4++uijvP3229l5553To0eP3H333XnhhRdy9dVXZ911183777+/QrOXRY8ePdKtW7fl3ueTdOnSJS0tLWlqakqSLFy4MHvssUc++uij/OIXv8iUKVMyefLkfOtb32rt6dy5c1paWtKxY8d2zQIAAAAAAAAAAED7e/zxx/MP//APefHFF3PVVVdl5syZueWWW7LJJpvkG9/4xqeeZ+HChVm0aFGb+84+++yMHz8+5557bmbOnJkHHnggRxxxRObOnbvcWWq1Wj7++OO/W9exY8e0tLSkUCgs916fpGfPnlljjTVav//hD3+Yk046Kd/+9rfz5JNPpn///hk6dOhib+qz1lprpUePHu2aAwAAAGBp1lprrXTp0qVdZt13333Zb7/9svfee+dXv/pVnnjiiZx33nmt7+m2vJa1v6WlJc3NzSu0119bY4010rNnz9bvX3nlleyxxx758pe/nBkzZmTMmDE57LDDcvfdd7fWlMvltLS0tGsOAAAAAAAAAAAAAAAAAAAAgP+tVoX3Hm9qakqHDh2We5+/Vq1Ws88+++S6667LaaedlieffDIPPvhgBg0alH//93/POuusk759++aPf/xj3njjjda+YrGY1VZbLcVisd2y/MXy3CPE/Ub+m/uNAABt1eZnc+PGjcu8efPSs2fPfPDBBxk0aFD69euXbt265bzzzlsZGQEAAAAAAAAAAAAAAGCVddNNN2WLLbZI586d87nPfS5DhgxpfeH5pEmTsummm6ZTp07ZZJNN8h//8R+tfbNmzUqhUMjNN9+cL3/5y+nSpUv69++fRx55pLXm1VdfzV577ZXu3buna9eu+eIXv5g777yzdf3BBx/MNttsk+bm5qyzzjo59dRT8/HHH7euDx48OKNHj86YMWOy5pprZujQoZk+fXoqlUomTZqUrbbaKn379s2Xv/zljB8/Pn379m3tfe6557Lbbrtl9dVXz9prr52vf/3reeedd/7m7AMOOCD77bffYj+fBQsWZM0118w111zT2jdmzJjW9Q8//DDf/OY3s95666W5uTn9+vXL97///WXO8UnuueeezJw5M9dee2223HLL7Lbbbjn33HNz+eWXL/ML+wEAAAAAAAAAAGi7P/3pTxk5cmS6du2addZZJ+PHj1/s78Y+/PDDjB07Nr169UrXrl2z7bbbZtq0aUmSadOm5eCDD06lUkmhUEihUMhZZ52VWq2Wgw46KF/4whfy8MMPZ4899siGG26YLbfcMt/+9rdz6623tu7/7LPPZqeddmr9m74jjjgi8+bNa10/6KCDMnz48Hz3u9/NOuusk8997nM59thjW9+cZPDgwXn11Vdz4okntmZIksmTJ2eNNdbIbbfdls022yzNzc2ZPXt23nvvvYwaNSrdu3dPly5dsttuu+Wll15a6s/ntttuyzHHHJMRI0akb9++6d+/fw499NCMHTu2tWbRokW54IIL0rdv33Tu3Dn9+/fPTTfd1Lo+bdq0FAqF/OxnP8s//MM/pLm5OT/4wQ9SKBTy61//erH9xo8fnw033HCxvrlz57auT58+PYMHD06XLl3SvXv3DB06NO+9994y5Viaiy++OIcffngOPvjgbLbZZrnyyivTpUuX/OAHP/i7vQAAAADL4y+vdxw9enTK5XLWXHPNnHnmmanVakmSPn36ZMKECa31c+fOzZFHHpm11147nTp1yuabb56f/vSnnzj77bffztZbb52vfvWr+fDDD3P77bdnhx12yMknn5yNN944G220UYYPH57LL798sb5bb701AwYMSKdOnfL5z38+Z5999mKv/ywUCrniiisybNiwdO3aNeeee2569+6dK664YrE5Tz31VIrFYl599dXWvp/85Cet66+//nr233//9OjRI127ds3WW2+dRx99dJlzfJIrr7wyffv2zbhx47Lppptm9OjR2WeffTJ+/Pi/2QcAAAAAAAAAAAAAAAAAAACwKvHe4/9/9tixY/P222+31ixatCjnn39+evXq1Xrf0UsuuSSzZ89uvYfp1KlT86Uvfal1/bbbbltsxrnnnps111wzXbt2zfDhw/P73/++9X4fyX/fF/X111/Po48+mn/913/NZpttlpaWluyxxx6ZMWNGevbsmXK5nC5duuSoo45a6v1d/3Jf2LvvvjubbrppVl999ey6666ZM2dOkuSss87KlClTcuutt7beT3batGmt/x1/+MMfZtCgQenUqVOuu+66LFq0KOecc0569+6d5ubmbLnllrnrrruWeo7cbwQAYPkU29pQLpczderU/PSnP83EiRMzevTo3HnnnXnwwQfTtWvXlZERAAAAAAAAAAAAAAAAVklz5szJ/vvvn0MOOSQvvPBCpk2blq997Wup1Wq57rrr8q1vfSvnnXdeXnjhhZx//vk588wzM2XKlMVmnH766Rk7dmxmzJiRjTbaKPvvv3/rC4+PPfbYfPjhh3nooYfy7LPP5qKLLsrqq6+eJHnjjTey++675x//8R/z9NNP54orrsj3v//9fOc731ls/pQpU9KxY8dMnz49V155ZVpaWvLxxx/nlltuWeyF5//T3Llzs9NOO2WrrbbK448/nrvuuitvvfVW9t133785e+TIkbn99tszb9681pq777478+fPz1e/+tVP3GvUqFG54YYbMnHixLzwwgu56qqrWh/jsub4a4888ki22GKLrL322q3Xhg4dmmq1mueff/5v9gIAAAAAAAAAALD8TjrppEyfPj233XZbpk6dmocffjhPPvlk6/ro0aPzyCOP5L/+67/yzDPPZMSIEdl1113z0ksvZfvtt8+ECRNSKpUyZ86czJkzp/Xv655//vl84xvfSLG45G2111hjjSTJ+++/n6FDh6Z79+557LHH8qMf/Sj33ntvRo8evVj9Aw88kN/+9rd54IEHMmXKlEyePDmTJ09Oktx8883p3bt3zjnnnNYMfzF//vxcdNFFmTRpUp5//vn07NkzBx10UB5//PHcdttteeSRR1Kr1bL77rtnwYIFn/jzaWlpyf3337/YG8v8tQsuuCDXXHNNrrzyyjz//PM58cQTc+CBB+bBBx9crO7UU0/NhRdemBdeeCH77LNPtt5661x33XWL1Vx33XU54IADPnGfGTNmZOedd85mm22WRx55JD//+c+z1157ZeHChW3K8T999NFHeeKJJzJkyJDWa8ViMUOGDFnsDYUAAAAA2tuUKVPS1NSUX/3qV7nkkkty8cUXZ9KkSUvULVq0KLvttlumT5+ea6+9NjNnzsyFF16YDh06LFH72muvZccdd8zmm2+em266Kc3NzWlpacnzzz+f5557bqlZHn744YwaNSonnHBCZs6cmauuuiqTJ0/Oeeedt1jdWWedla9+9at59tlnc9hhh2X//ffP9ddfv1jNddddlx122CEbbLDBEvvMmzcvgwYNyhtvvJHbbrstTz/9dE455ZQsWrSoTTn+2iOPPLLY73eS/36Npt/vAAAAAAAAAAAAAAAAAAAAAI3Ce48vPnvPPffMBx98sNh9R6dMmZLTTjstzzzzTE488cSccsop+eUvf9k64+STT86YMWNy//33p1u3bjn//PNb79Fxww035Dvf+U5OPfXU/OIXv8jGG2+ca6+9Nh999FGS/77Hx5133pnhw4dn3XXXbZ05b968dO7cOd27d09TU1OS5Bvf+EZmzpyZG2+8can3d50/f36++93v5j//8z/z0EMPZfbs2Rk7dmySZOzYsdl3332z6667tt5Pdvvtt2/tPfXUU3PCCSfkhRdeyNChQ3PJJZdk3Lhx+e53v5tnnnkmQ4cOzbBhw/LSSy994s/c/UYAAJZP0/I27rDDDtlhhx3aMwsAAAAAwP9j797jv5wP/48/P+/OqU/NMYemdKAa6aBUc5hTzqyDIcWQOcxm+JpvfJ212Vdmm6/5LV+tyLnEyhR+jtlGpdAJFQ0jNj6J0OHz+8Ntn99aRVFdfbjfb7du3u/rel2v6/F++6fet+t6XQAAAAAAAABQrfztb3/L0qVL06tXr6obj3feeeckycUXX5whQ4akV69eSZLmzZtX3Vx8/PHHV81x7rnn5pBDDkmSXHrppWnXrl1efvnl7LTTTpk/f3569+5dNecOO+xQddz111+fpk2b5rrrrktZWVl22mmnvPHGG/npT3+aiy66KKVSKUnSqlWr/OIXv1ihe9CgQTn22GNz6qmnpkuXLtlnn30yYMCAbLXVVkmS6667Lh06dMjgwYOrjrnpppvStGnTvPjii2nduvUq527RokU22WST3HPPPenfv3+S5NZbb83hhx+ehg0brvT9vfjii7nzzjvz4IMPVt1I/a+fcU07/t2bb75Z9Vn+6Z/v33zzzVUeAwAAAAAAAAAAwJfz/vvvZ/jw4bn11luz7777JkmGDRtW9UCU+fPnZ9iwYZk/f37VtnPPPTcPPPBAhg0blsGDB6dRo0YpKytLkyZNqub954NKdtppp888/6233pqPPvooI0aMyCabbJLk0+vQDjvssFx11VVV15F94xvfyHXXXZcaNWpkp512yiGHHJKHH344AwcOzKabbpoaNWqkYcOGKzQkyZIlS3L99denffv2VV333XdfJk6cWPUAlpEjR6Zp06YZM2ZM+vbtu1LjNddckz59+qRJkyZp165dunfvniOOOCIHHXRQkuTjjz/O4MGD89BDD6Vbt25JPr2u7sknn8z/+T//J3vttVfVXJdddln233//qvf9+vXLddddl8svvzzJp9foTZ48Obfccssqv69f/OIX6dy5c66//vqqbe3atVvrjn/1zjvvZNmyZau8hm/WrFmrPAYAAABgXWjatGl++ctfpqysLDvuuGOef/75/PKXv8zAgQNXGPfQQw/l6aefzsyZM6vuUfzX+xr/afbs2dl///3z3e9+N9dee23KysqSJGeeeWaeeOKJ7Lzzztl+++2z++6754ADDki/fv1Sp06dJJ/eK3r++edX3Uu6ww475PLLL895552Xiy++uOocxx57bL7//e9Xve/Xr1+GDBmS+fPn55vf/GaWL1+e22+/PRdeeOEqP/Ott96at99+O88880w23XTTJEnLli2r9q9px79b3T2aCxcuzOLFi1OvXr3VHgsAAAAAAAAAAAAAAAAAAACwMfDs8ZWfPf63v/0tCxcuTP369TN48OAMHz48HTp0SIsWLdKqVauMGzcuI0eOzE9+8pMkySmnnJI+ffqkvLw8gwYNyiGHHJL69esnSYYMGZI+ffrk3HPPTZK0b98+jz76aN5999189NFHWbhwYSoqKtKiRYsVPt+SJUtSq1atqvcvvfRSxo4dmxtvvDFdunRJo0aNqtZ3ffjhh/Pd73636rgbbrihar4f/vCHueyyy5IkDRo0SL169fLxxx+vtJ5skpx11llV/6+T5Oqrr85Pf/rTHH300UmSq666Ko888kiuvfba/M///M9Kx1tvxHojAMAXU1rTgX/6058yduzYFbaNGDEizZs3z5ZbbplTTjklH3/88ToPBAAAAAAAAAAAAAAAgI1V+/bts++++2bnnXdO3759M3To0Lz77rv54IMPMmfOnJx00klp0KBB1Z8rrrgic+bMWWGOXXbZper11ltvnSRZsGBBkuRHP/pRrrjiivTo0SMXX3xxnnvuuaqxM2fOTLdu3VJWVla1rUePHlm0aFFee+21qm2dOnVaqfvKK6/Mm2++mRtuuCHt2rXLDTfckJ122inPP/98kmTatGl55JFHVmjfaaedkmSF/n+fu2bNmjnqqKMycuTIJMkHH3yQe++9N/369Vvl9zd16tTUqFEje+211yr3r2kHAAAAAAAAAAAAxZs7d26WLFmSLl26VG1r1KhRdtxxxyTJ888/n2XLlqV169YrXBf22GOPfeY1YZWVlWt0/pkzZ6Z9+/bZZJNNqrb16NEjy5cvz+zZs6u2tWvXLjVq1Kh6v/XWW1ddt/dZateuvcI1fzNnzkzNmjXTtWvXqm2bbbZZdtxxx8ycOXOVc7Rt2zYvvPBC/vznP+fEE0/MggULcthhh+Xkk09Okrz88sv58MMPs//++6/wHY0YMWKl76hz584rvD/66KPzyiuv5M9//nOSZOTIkenYsWPVdXf/burUqdl3331XuW9tOgAAAAA2BrvvvvsK91t269YtL730UpYtW7bCuKlTp2a77barerDwqixevDh77LFHevXqlV/96lcrzLvJJptk3Lhxefnll3PhhRemQYMGOeecc9KlS5d8+OGHST69N/Kyyy5b4XeVgQMH5m9/+1vVmGTl33d23XXXtGnTJrfeemuS5LHHHsuCBQvSt2/fVXZOnTo1HTp0qHpw7r9b0w4AAAAAAAAAAAAAAAAAAACArxrPHl/52eP169fPe++9V7Xu6IABA9K+ffuqee69997Mnz+/6phWrVqlQYMGq/z8L730Ulq3bp0pU6ZU/WnZsmWS5OOPP16r9WRr1qyZb33rW1Xb/rm+679+nvr166dFixZV79d0PdlkxTU+Fi5cmDfeeCM9evRYYUyPHj1Wu56s9UYAAL6Ymms68LLLLsvee++dQw89NMmnDzU46aSTcsIJJ6RNmzb57//+72yzzTa55JJL1lcrAAAAAAAAAAAAAAAAbFRq1KiRBx98ME899VQmTJiQ3/zmN7ngggvyhz/8IUkydOjQdO3adaVj/lWtWrWqXv/z5vfly5cnSU4++eT07Nkz48aNy4QJE/Kzn/0sQ4YMyZlnnrnGjZtssskqt2+22Wbp27dv+vbtm8GDB6dDhw65+uqrM3z48CxatCiHHXZYrrrqqpWO++dN7aubu1+/ftlrr72yYMGCPPjgg6lXr14OPPDAVTbUq1fvM9vXtOPfNWnSJE8//fQK2956662qfQAAAAAAAAAAAGx4ixYtSo0aNTJ58uSVrqX754NXVqV169ZJklmzZqVDhw5fuuNfr9tLPr1275/X7X2WevXqrfCQmy+qVCplt912y2677Zazzjort9xyS/r3758LLrggixYtSpKMGzcu22677QrH1alTZ4X3/34NX5MmTbLPPvvk1ltvze67755bb701p5122md+ntVZm45/tfnmm6dGjRpV1+z901tvveX6PQAAAGCj8Hn3NSaf/v6x3377ZezYsfmP//iPlX4fSZIWLVqkRYsWOfnkk3PBBRekdevWueOOO/L9738/ixYtyqWXXppevXqtdFzdunWrXq/uHs1bb701559/fm699dYceOCB2Wyzzb7QZ1nTjn/XpEmTVf6+U15evkbfHwAAAAAAAAAAAAAAAAAAAEDRPHt85bk32WST/O1vf0tFRUWS5Ne//nX23HPPlEqlJMncuXNTXl6ejz76KElSs2bN1X7+JKlfv37atm1b9X7TTTdNvXr10qBBgzRs2DDl5eWZM2fOCg21atXKBx98sMrP/e9rxn7WvrKyslRWVq52/L9a3fe8tqw3AgCwdkprOnDq1KnZd999q97ffvvt6dq1a4YOHZqzzz47v/71r3PnnXeul0gAAAAAAAAAAAAAAADYWJWVlaVHjx659NJL8+yzz6Z27dqZOHFittlmm8ydOzctW7Zc4U/z5s3Xav6mTZvm1FNPzejRo3POOedk6NChSZI2bdrkT3/60wo3dE+cODENGzbMdtttt1bnqF27dlq0aFF1k3nHjh0zffr0NGvWbKX+z7sxvHv37mnatGnuuOOOjBw5Mn379l3tTeo777xzli9fnscee2yV+79oR7du3fL8889nwYIFVdsefPDBlJeXr3DzPQAAAAAAAAAAAOvODjvskFq1auWZZ56p2lZRUZEXX3wxSdKhQ4csW7YsCxYsWOmasCZNmiT59Hq2ZcuWrTDvrrvumrZt22bIkCErPJDln957770kn15XN23atBUeuDJx4sSUSqXsuOOOa/w5VtWwKm3atMnSpUvzl7/8pWrb3//+98yePXutrlX759gPPvggbdu2TZ06dTJ//vyVvqOmTZt+7lz9+vXLHXfckT/96U+ZO3dujj766NWO3WWXXfLwww+vtumLdNSuXTudOnVaYd7ly5fn4YcfTrdu3T63HwAAAOCL+tffaJLkz3/+c1q1arXSQ5B32WWXvPbaa1W/Wa1KqVTKzTffnE6dOuU73/lO3njjjc88d7NmzVK/fv0V7tGcPXv2Sr+rtGzZsurhxKtz7LHH5oUXXsjkyZNz9913p1+/fqsdu8suu2Tq1Kn5xz/+scr9X7SjW7duK/1u9OCDD/p9BwAAAAAAAAAAAAAAAAAAAKhWPHt8RXXr1k3t2rXTpEmT1K5dO++//35at25ddfz222+fbbbZZoVjFi1atMq5WrVqlcmTJ6dOnTqpW7du6tatm0mTJqWsrCw1atRIqVTKwQcfnDFjxqywdkeDBg2yePHivPvuu1m6dGnV+q4zZ85M3bp1k/z/9V1btGixVt/TmqwnW15enm222SYTJ05cYfvEiRPXaj1Z640AAHy+z/5b0L949913s9VWW1W9f+yxx3LQQQdVvd9tt93y17/+dd3WAQAAAAAAAAAAAAAAwEbsL3/5SwYPHpxJkyZl/vz5GT16dN5+++20adMml156aX72s5/l17/+dV588cU8//zzGTZsWK655po1nv+ss87K+PHjM2/evEyZMiWPPPJI2rRpkyQ5/fTT89e//jVnnnlmZs2alXvvvTcXX3xxzj777M+8aXns2LE57rjjMnbs2Lz44ouZPXt2rr766tx///054ogjkiRnnHFG/vGPf+SYY47JM888kzlz5mT8+PH5/ve/v0Y3jB977LG54YYb8uCDD37mjdnNmjXL8ccfnxNPPDFjxozJvHnz8uijj+bOO+/8Uh0HHHBA2rZtm/79+2fatGkZP358LrzwwpxxxhmpU6fO5/YDAAAAAAAAAACw9ho2bJjjjz8+//Ef/5FHHnkk06dPz0knnZRSqZSysrK0bt06/fr1y4ABAzJ69OjMmzcvTz/9dH72s59l3LhxST69rmzRokV5+OGH88477+TDDz9MWVlZhg0blhdffDF77LFH7r///sydOzfPPfdcrrzyyqpr3/r165e6devm+OOPzwsvvJBHHnkkZ555Zvr377/C+tqfp1mzZnn88cfz+uuv55133lntuFatWuWII47IwIED8+STT2batGk57rjjsu2221Y1/bs+ffrkl7/8Zf7yl7/k1VdfzaOPPpozzjgjrVu3zk477ZSGDRvm3HPPzU9+8pMMHz48c+bMyZQpU/Kb3/wmw4cP/9z2Xr165f33389pp52W73znOys94OZf/ed//meeeeaZnH766Xnuuecya9as/Pa3v80777zzpTrOPvvsDB06NMOHD8/MmTNz2mmn5YMPPsj3v//9z+0HAAAA+KLmz5+fs88+O7Nnz85tt92W3/zmN/nxj3+80ri99tore+65Z3r37p0HH3ww8+bNyx//+Mc88MADK4yrUaNGRo4cmfbt22efffbJm2++mSS55JJLct555+XRRx/NvHnz8uyzz+bEE0/MkiVLsv/++ydJLrrooowYMSKXXnpppk+fnpkzZ+b222/PhRde+Lmfo1mzZunevXtOOumkLFu2LIcffvhqxx5zzDFp0qRJjjzyyEycODFz587NqFGj8qc//elLdZx66qmZO3duzjvvvMyaNSvXX3997rzzzvzkJz/53H4AAAAAkk8++SSXXHJJLrnkknzyySdF5wAAAAAAAAAAAAAAwNeSZ4+vWqNGjbJ48eIcd9xxueKKK1ZYd/Tmm2/O3XffXTV20003zSuvvJJ333236h6J9957L0nyk5/8JGPGjMkvfvGLTJ06NRdccEGmT5+eTz75JJWVlVXf0dZbb52uXbtmxIgRmTFjRt5666388Y9/TIcOHbJgwYJsueWW2XvvvfOzn/0sTz31VKZOnZpjjz0222yzTfbdd981/v/RrFmzPPfcc5k9e3beeeedLFmyZLVj/+M//iNXXXVV7rjjjsyePTvnn39+pk6dusq1ShLrjQAAfFGr/5vvv9lqq60yb968JJ/eqDtlypTsvvvuVfvff//91KpVa90XAgAAAAAAAAAAAAAAwEaqvLw8jz/+eA4++OC0bt06F154YYYMGZKDDjooJ598cm688cYMGzYsO++8c/baa6/8/ve/T/Pmzdd4/mXLluWMM85ImzZtcuCBB6Z169a5/vrrkyTbbrtt7r///jz99NNp3759Tj311Jx00kmfe9Ny27ZtU79+/ZxzzjnZdddds/vuu+fOO+/MjTfemP79+ydJttlmm0ycODHLli3LAQcckJ133jlnnXVWGjdu/Jk34/9Tv379MmPGjGy77bbp0aPHZ4797W9/mz59+uT000/PTjvtlIEDB+aDDz74Uh01atTI2LFjU6NGjXTr1i3HHXdcBgwYkMsuu+xz2wEAAAAAAAAAAPjirrnmmnTr1i2HHnpo9ttvv/To0SNt2rRJ3bp1kyTDhg3LgAEDcs4552THHXfMkUcemWeeeSbf/OY3kyTdu3fPqaeemu9973vZYost8otf/CJJ0qVLl0yaNCktW7bMwIED06ZNmxx++OGZPn16rr322iRJ/fr1M378+PzjH//Ibrvtlj59+mTffffNddddt1af4bLLLssrr7ySFi1aZIsttvjMscOGDUunTp1y6KGHplu3bqmsrMz999+/2vW6e/bsmT/84Q857LDD0rp16xx//PHZaaedMmHChNSsWTNJcvnll+e//uu/8rOf/azq+sFx48at0fWHDRs2zGGHHZZp06alX79+nzm2devWmTBhQqZNm5YuXbqkW7duuffee790x/e+971cffXVueiii7Lrrrtm6tSpeeCBB7LVVlt9bj8AAADAFzVgwIAsXrw4Xbp0yRlnnJEf//jHOeWUU1Y5dtSoUdltt91yzDHHpG3btjnvvPNW+bDhmjVr5rbbbku7du2yzz77ZMGCBdlrr70yd+7cDBgwIDvttFMOOuigvPnmm5kwYUJ23HHHJJ/+BjR27NhMmDAhu+22W3bffff88pe/zPbbb79Gn6Vfv36ZNm1avvvd76ZevXqrHVe7du1MmDAhW265ZQ4++ODsvPPO+fnPf54aNWp8qY7mzZtn3LhxefDBB9O+ffsMGTIkN954Y3r27LlG/QAAAAAAAAAAAAAAAAAAAABF8+zxVWvUqFE++uij/OhHP1pp3dHHHnssTZs2rRrbtGnTfOMb38j8+fPz8ssvJ0mWL1+e5NP1MQYNGpSrrroqPXr0yHPPPZc+ffqkrKys6vjGjRtnzJgxOe6443LFFVekQ4cO2XPPPfPoo4/mvPPOy9/+9rfMmzcvv/71r9O1a9cceuih6d69eyorK3Pvvfeudn3XVRk4cGB23HHHdO7cOVtssUUmTpy42rE/+tGPcvbZZ+ecc87JzjvvnAceeCD33XdfWrVqtcrx1hsBAPhiyiorKyvXZOBpp52WadOm5aqrrsqYMWMyfPjwvPHGG6ldu3aSZOTIkbn22mvzzDPPrNdgAADYWCxcuDCNGjVKRUVFysvLi84BAAAAAAAAAAAA+Frae++9s+uuu+baa68t5HgAAAAAAAAAAABW74MPPsi2226bIUOG5KSTTio6h3Xo0UcfzXe+8528++67ady48QY/HgAAAOCf3Cf4xZWVleWee+7JkUceWcjxAAAAAF9Fn3zySQYPHpwkGTRoUGrXrl1wEQAAAAAAAAAAAAAAwIY3e/bs1KtXL9/85jfX+JjKysosWbIkSTJv3ry1Pp7PZ70RAODLWrhwYRo1apSKioqUl5evdlxpTSe8/PLLU7Nmzey1114ZOnRohg4dusINujfddFMOOOCAL1cNAAAAAAAAAAAAAAAAsJauv/76NGjQIM8///waHzNy5Mg0aNAgTzzxxHosAwAAAAAAAAAA+Hp59tlnc9ttt2XOnDmZMmVK+vXrlyQ54ogjCi5jfdluu+1yzDHHrNUx7dq1y0EHHbSeigAAAABYG8ccc0y22267tTrm1FNPTYMGDdZTEQAAAAAAAAAAAAAAAAAAAABfBW+//XamTJmSDz/8cI2Pee+99/LCCy/k/fffX49lX2/WGwEANoSaazpw8803z+OPP56Kioo0aNAgNWrUWGH/XXfd5S8iAAAAAAAAAAAAAAAAwAY1cuTILF68OEnyzW9+c42PO/zww9O1a9ckSePGjddHGgAAAAAAAAAAwNfS1VdfndmzZ6d27drp1KlTnnjiiWy++eZFZ7GOde3aNS+99FKSrPX65Pfff3+WLFmSJCkvL1/nbQAAAACsmX/+vvPvz6T7PJdddlnOPffcJMnWW2+9zrsAAAAAAAAAAAAAAAAAAAAAqN6aN2+eysrKJEmtWrXW+LjGjRtnk002Sc2aNVMqldZX3teW9UYAgA2lrPKffxsEAADWysKFC9OoUaNUVFR4uBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfI198sknGTx4cJJk0KBBqV27dsFFAAAAAAAAAAAAAAAA1UNlZWWWL1+eJCmVSikrKyu4CACAf7dw4cI0atQoFRUVKS8vX+240gZsAgAAAAAAAAAAAAAAAKqRysrK3H777XnvvfeKTgEAAAAAAAAAAIBq6cMPP8wtt9ySZcuWFZ0CAAAAwEZm2rRpefLJJ4vOAAAAAAAAAAAAAAAAAAAAAKCaeeqpp7Jw4cKiM9apJUuW5Lbbbsttt92WJUuWFJ0DAMCXUCo6AAAAAAAAAAAAAAAAANg4TZkyJcccc0z+53/+p+gUAAAAAAAAAAAAqJauueaa9O/fPw888EDRKQAAAABsZE444YT06tXLw4EBAAAAAAAAAAAAAAAAAAAAWGNvvfVWevTokeOPP77olHXu5Zdfzssvv1x0BgAAX1Kp6AAAAAAAAAAAAAAAAABg4zRmzJgkyahRo4oNAQAAAAAAAAAAgGrq8ccfT/L/r8kDAAAAgCR57rnnMnXq1Lz99tsZP3580TkAAAAAAAAAAAAAAAAAAAAAVBPjxo1L8um6p5WVlQXXAADAykpFBwAAAAAAAAAAAAAAAAAbp3vuuSdNmjTJs88+mzlz5hSdAwAAAAAAAAAAANXKP/7xjzzyyCNp2LBhxowZk6VLlxadBAAAAMBGYsSIEdl8883zrW99K8OHDy86BwAAAAAAAAAAAAAAAAAAAIBq4t57703y6dqnM2fOLLgGAABWVio6AAAAAAAAAAAAAAAAANj4zJgxI9OnT8+QIUNSr169jBo1qugkAAAAAAAAAAAAqFbuu+++LFu2LCNHjsw777yTxx9/vOgkAAAAADYCS5cuzciRI3Psscfm+9//fu677768++67RWcBAAAAAAAAAAAAAAAAAAAAsJFbuHBhxo8fnyuvvDINGzb07PF17NJLL83IkSOLzgAAqPZKRQcAAAAAAAAAAAAAAAAAG5877rgj5eXl6d27dw466CA3zAMAAAAAAAAAAMBaGjVqVLp3755DDz0022+/fe6+++6ikwAAAADYCDz44IN58803M2DAgBx77LFZtmxZ7rjjjqKzAAAAAAAAAAAAAAAAAAAAANjIjR07Nh9//HH69euXQw45JKNHjy466SujsrIyl1xySY477riiUwAAqr1S0QEAAAAAAAAAAAAAAADAxqWysjJ33HFHjjzyyNSpUye9e/fO008/nVdffbXoNAAAAAAAAAAAAKgW3n333UyYMCF9+vRJWVlZevfundGjR2fZsmVFpwEAAABQsBEjRqRdu3bp2LFjmjRpkp49e2bEiBFFZwEAAAAAAAAAAAAAAAAAAACwkbvrrrvSpUuXbL/99undu3emTp2auXPnFp31lTBv3ryq18uXLy+wBACg+isVHQAAAAAAAAAAAAAAAABsXCZNmpTZs2fn6KOPTpIceuihqV+/fm6++eaCywAAAAAAAAAAAKB6GDlyZJYvX55jjjkmSXLUUUflrbfeykMPPVRwGQAAAABFqqioyJgxYzJgwICUlZUlSQYMGJA//elPeemllwquAwAAAAAAAAAAAAAAAAAAAGBj9f777+ePf/xj+vbtmyQ58MADU7du3YwaNargsq+GyZMnV72eM2dOgSUAANVfqegAAAAAAAAAAAAAAAAAYONyww035Jvf/GYOOOCAJEl5eXmOOeaY/O53v8uyZcsKrgMAAAAAAAAAAICNW2VlZW688cYcdthh2WqrrZIkXbp0yS677JLf/va3BdcBAAAAUKS77rorn3zySY477riqbYcffngaNWqUESNGFFgGAAAAAAAAAAAAAAAAAAAAwMbstttuy5IlS/K9730vSdKgQYMcccQRGTZsWCorKwuuq/4mTZqU+vXrV70GAOCLKxUdAAAAAAAAAAAAAAAAAGw8/v73v+e2227LKaeckho1alRtP+200/LXv/41Y8eOLbAOAAAAAAAAAAAANn5PPPFEpk2bloEDB1ZtKysry2mnnZY//OEPefXVVwusAwAAAKBII0aMyH777Zdtttmmalu9evVy1FFH5eabb87y5csLrAMAAAAAAAAAAAAAAAAAAABgYzV06NAceOCBadq0adW2U045JTNnzsyTTz5ZYNlXw+TJk7P//vtnhx12yKRJk4rOAQCo1kpFBwAAAAAAAAAAAAAAAAAbj//+7/9OqVTKKaecssL2Tp065dvf/nYuu+yyLF++vKA6AAAAAAAAAAAA2Phdfvnl2WWXXXLggQeusP24447LpptumiuuuKKgMgAAAACKNHv27DzxxBM5/vjjV9p3/PHH59VXX83DDz9cQBkAAAAAAAAAAAAAAAAAAAAAG7NJkyZl0qRJGThw4Arb995777Rs2TI33HBDQWVfDZWVlZkyZUo6deqUzp07Z9KkSUUnAQBUa6WiAwAAAAAAAAAAAAAAAICNw7x58/Kb3/wmP/rRj7LFFlustH/w4MGZMmVKbrvttgLqAAAAAAAAAAAAYOM3duzYPPTQQ7noootSVla2wr4GDRpk0KBBGTZsWF544YWCCgEAAAAowjvvvJMjjzwyzZo1y5FHHrnS/u7du6dr167p379/5s6du+EDAQAAAAAAAAAAAAAAAAAAANhoXXnllWnVqlUOPfTQFbaXSqX88Ic/zB133JGXX365oLrqb968eXn33XfTuXPndO7cOVOmTMmyZcuKzgIAqLZKRQcAAAAAAAAAAAAAAAAAxVuyZElOPPHEbL755jn//PNXOWaPPfbIUUcdlTPPPDN//etfN3AhAAAAAAAAAAAAbNzeeuutnHbaaenZs2d69eq1yjGnnXZadtxxx/Tv3z8fffTRBi4EAAAAoAiLFi3KIYcckr///e+ZMGFC6tevv9KYsrKy3HfffSkvL88BBxyQN998s4BSAAAAAAAAAAAAAAAAAAAAADY2zz77bMaMGZNBgwalZs2aK+0/5ZRTsuWWW+byyy8voO6rYdKkSUmSTp06pXPnzlm0aFFefPHFgqsAAKqvUtEBAAAAAAAAAAAAAAAAQLE+/vjjnHDCCZk4cWKGDx+e8vLy1Y797W9/m4YNG+aAAw7I66+/vgErAQAAAAAAAAAAYOO1YMGCHHrooVm6dGmGDh2asrKyVY6rW7dubrnllsyePTu9e/fOBx98sIFLAQAAANiQPvnkk/Tu3TszZ87MAw88kFatWq127JZbbpkJEybkww8/zEEHHZSKiooNWAoAAAAAAAAAAAAAAAAAAADAxmbp0qUZOHBg2rVrl379+q1yTL169XLBBRfk5ptvzl/+8pcNXPjVMHny5Gy33XbZcsst07FjxyTJM888U3AVAED1VSo6AAAAAAAAAAAAAAAAACjGsmXLMn78+Oy+++65++67c8stt2Tvvff+zGM23XTTPPTQQ1m0aFF22WWX3HDDDVm8ePGGCQYAAAAAAAAAAICNzAcffJAbb7wx7du3z1//+tfcf//9adq06Wce06FDh9x777159NFH07Fjx9x9991ZsmTJBioGAAAAYEP46KOP8tBDD6V379559NFHM2bMmKoH8X6WZs2aZfz48XnllVdy8MEH5w9/+EMWLVq0AYoBAAAAAAAAAAAAAAAAAAAA2NgMGTIkzz77bG666abUqlVrteN+8IMfpEOHDjnllFOsc/oFTJ48OZ07d06SNGrUKK1atcrkyZMLrgIAqL5qFh0AAAAAAAAAAAAAAAAArH8ff/xxXnzxxcyYMSPTp0/P9OnTM3HixLz11lvp2rVrJk6cWHUj9+dp1apVnn322Zx11lk544wzcvbZZ2fPPffMrrvumrZt26Zdu3Zp06ZN6tevv54/FQAAAAAAAAAAAKxflZWVeeutt/LKK6/k1VdfXem/c+fOzUcffZS+ffvmmmuuyXbbbbdG8+6///6ZPHlyzjjjjPTt2zfl5eXp3r172rRpk5YtW6ZZs2bZfvvts/3226dBgwbr+VNufD766KNUVFTkvffeS0VFRZYuXZrKysosX748lZWVK7z+122VlZVFpwMAAFCNrcm/K9f0357Vea4izlnd51q6dGkqKiqqfs+YNm1aHnvssSxevDhbb7117rjjjuyzzz5rNFeS7Lzzzhk3blwGDBiQww8/PLVq1UqPHj3SuXPnfOMb30jjxo3TqFGj1KpVK6VSKWVlZSkrK/vc1wAAALA+rem/Pddk3Lqcq4hzmutTpVIp5eXlVb9l1KtXz28UAAAAAAAAAAAAAAAAa2HWrFm5+OKLc84556RLly6fObZmzZr53e9+ly5dumTIkCE5//zzN1Bl9VdZWZnJkyfnnHPOqdrWqVOnTJ48ucAqAIDqrazSqvEAAPCFLFy4MI0aNUpFRUXKy8uLzgEAAAAAAAAAAABYydSpUzNixIhMmDAhs2bNyrJly5IkTZo0Sbt27dKxY8d897vfze677/6FH2A4d+7cjB49Ov/3//7fTJ8+PfPnz0/y6YMUmzdvnu7du+eoo47KIYccklKptM4+GwAAAAAAAAAAAKwvs2fPzi233JKHHnooM2bMyMKFC6v2NWrUKM2aNcv222+fZs2aZYcddsjhhx+e5s2bf+HzTZs2Lffdd1+efvrpzJo1K6+88kqWLl1atX+zzTarOl/nzp3Tv3//bLfddl/qM25s/v73v+ehhx7K+PHjM2HChLz++utFJwEAAACslRo1aqRx48Zp1KhRdthhh/Ts2TM9e/bMt771rS98D2dlZWVefvnljB8/PuPHj8+sWbNSUVGR9957L0uWLFnHnwAAAABg/dp8882z3377pWfPnjnggAOyzTbbFJ20XnzyyScZPHhwkmTQoEGpXbt2wUUAAAAAAAAAAAAAAEB1tGzZsuy55555++23M23atNSrV2+NjvvpT3+aX/3qV3n22WfTpk2b9Vy5bhV1X8acOXPSsmXL3H///TnooIOSJEOGDMlFF12UhQsXpkaNGhukAwCgOli4cGEaNWqUioqKlJeXr3ZcWWVlZeUG7AIAgK+MNf1LNwAAAAAAAAAAAMCG9s477+T000/PXXfdla233joHH3xwunTpkrZt26ZNmzbZbLPN1tu533///cyYMSMzZszICy+8kPHjx2f69Olp3759hg0blg4dOqy3cwMAAAAAAAAAAMCXsXDhwpx11ln5/e9/n8aNG6dnz57Zdddds+OOO6Z58+bZfvvt07hx4/XesWzZsrzxxht59dVX88orr1T995VXXsnEiROzdOnSnH322bnssss22ENj1qdf/epXOfvss7N8+fK0a9cuPXv2TPv27dO4ceM0btw45eXlqVWrVkqlUsrKylJWVlb1elXbAAAA4MtYk39bbkxjNqaWr/OYUqmU+vXrb7DfJiorK/PRRx9lyZIlqayszPLly1NZWbna18uXL98gXQAAAHw1rckj0Nf0Mekbeq4izmmu/2/ZsmVZuHBh3nvvvVRUVGTGjBmZMGFCJk+enMrKypx99tm5+uqrv3LXe3zyyScZPHhwkmTQoEFfiet7AAAAAAAAAAAAAACADe+6667LmWeemccffzx77LHHGh+3ePHitG/fPptvvnmeeOKJ1KhRYz1WrltF3Zdx55135nvf+17eeuutbLnllkmSRx99NN/5znfywgsvpF27dhukAwCgOli4cGEaNWqUioqKlJeXr3ZczQ3YBAAAAAAAAAAAAAAAAKxnr7/+evbee+/84x//yPDhw3PsscemZs0NdxtRw4YN07Vr13Tt2jVJMmTIkDz11FP54Q9/mO7du2fMmDHp2bPnBusBAAAAAAAAAACANfH3v/893/nOd/LKK6/kuuuuy0knnZQ6deoU0lKjRo00bdo0TZs2zbe//e0V9i1cuDDXXnttrrjiikyaNCljx45N3bp1C+lcF0aMGJGzzjorZ555Zs4777xst912RScBAAAAbPTKyspSr1691KtXr+gUAAAAgLVy5ZVX5u23386NN96YQYMGZdNNN80FF1xQdBYAAAAAAAAAAAAAAMBG5fXXX8+gQYPygx/8IHvsscdaHVuvXr3cdNNN2XPPPfOb3/wmZ5111vqJ/AqZPHlymjZtmi233LJqW4cOHar2tWvXrqg0AIBqq1R0AAAAAAAAAAAAAAAAALBufPzxxzn00EPz8ccfZ9KkSRkwYEBq1qxZdFa6d++eiRMnZt99903v3r0zY8aMopMAAAAAAAAAAACgytKlS3PkkUfmzTffzJ///OecfvrpqVOnTtFZq1ReXp6LLrooEyZMyMSJE3PyySensrKy6KwvZNy4cTnxxBNz0kkn5Ve/+lW22267opMAAAAAAAAAAFjPtthii/znf/5nLrvsslx44YX53e9+V3QSAAAAAAAAAAAAAADARuWnP/1p6tevn5///Odf6Phvf/vb+eEPf5hBgwbl1VdfXcd1Xz2TJk1Kp06dVtjWqFGjtGrVKpMmTSqoCgCgeisVHQAAAAAAAAAAAAAAAACsG5dcckmmT5+e++67L82bNy86ZwX16tXLHXfckaZNm+aEE07IsmXLik4CAAAAAAAAAACAJMmQIUPy1FNPZfTo0Wnbtm3ROWtk7733zk033ZSRI0fmnnvuKTpnrU2cODF9+/bNYYcdlhtuuCFlZWVFJwEAAAAAAAAAsAFdeOGF+eEPf5jTTjsto0aNKjoHAAAAAAAAAAAAAABgozBz5szceuutufjii9O4ceMvPM/gwYOzySab5Oc///m6i/sKWr58eSZPnpzddtttpX2dO3fO5MmTC6gCAKj+SkUHAAAAAAAAAAAAAAAAAF/e/Pnzc80112TQoEHZddddi85ZpU022SQ33XRTnnnmmYwcObLoHAAAAAAAAAAAAMg777yTK6+8Mj/60Y/y7W9/u+ictXL00Ufn8MMPz1lnnZWPP/646Jw1VlFRkcMOOyxdunTJbbfdlpo1axadBAAAAAAAAADABlZWVpZf/epXOeqoo3Lsscfm5ZdfLjoJAAAAAAAAAAAAAACgcFdeeWW22267nHjiiV9qngYNGuScc87JTTfdlNdee20d1X31zJkzJxUVFencufNK+zp16pSpU6dm6dKlBZQBAFRvpaIDAAAAAAAAAAAAAAAAgC/viiuuSKNGjXLuuecWnfKZunXrliOPPDKXXnqpG8QBAAAAAAAAAAAo3C9+8YskyQUXXFBwydorKyvLz3/+87z22msZPnx40Tlr7M4770xFRUVGjhyZunXrFp0DAAAAAAAAAEBBSqVSbrrpptSrVy+///3vi84BAAAAAAAAAAAAAAAo1IIFC3LnnXfmJz/5SerUqfOl5zvjjDNSp06d/O53v1sHdV9NkyZNSpJ06tRppX2dOnXKhx9+mFmzZm3oLACAaq9UdAAAAAAAAAAAAAAAAADw5bz77ru55ZZb8uMf/zgNGjQoOudz/dd//Vfmzp2bcePGFZ0CAAAAAAAAAADA19iHH36YoUOH5rTTTsvmm29edM4X0qZNm/Tu3TtDhgxJZWVl0TlrZMSIEdl///2z7bbbFp0CAAAAAAAAAEDB6tWrl+9973u5+eabs3z58qJzAAAAAAAAAAAAAAAACjN8+PCUSqUcf/zx62S+hg0b5thjj81NN92UpUuXrpM5v2omTZqU5s2bZ7PNNltpX8eOHZMkkydP3tBZAADVXqnoAAAAAAAAAAAAAAAAAODLGT58eJYsWZKTTz656JQ10rFjx3Tp0iW//e1vi04BAAAAAAAAAADga+z2229PRUVFfvCDHxSd8qWcfvrpefHFF/Pkk08WnfK55syZkyeffHKdPfQHAAAAAAAAAIDq7/jjj8/8+fPz2GOPFZ0CAAAAAAAAAAAAAABQiMrKygwdOjR9+/bNpptuus7mHThwYF5//fU88MAD62zOr5JJkyalc+fOq9xXXl6e1q1bZ/LkyRu4CgCg+isVHQAAAAAAAAAAAAAAAAB8OUOHDk2vXr2y1VZbFZ2yxk499dSMHz8+r732WtEpAAAAAAAAAAAAfE397//+bw444IDssMMORad8KXvttVdatGiRG2+8seiUz3XzzTenYcOGOeKII4pOAQAAAAAAAABgI9GtW7e0bNkyI0aMKDoFAAAAAAAAAAAAAACgEFOnTs1LL72UAQMGrNN5O3XqlHbt2uX2229fp/N+FSxbtixTpkxJ586dVzumU6dOmTRp0gasAgD4aigVHQAAAAAAAAAAAAAAAAB8cTNmzMiMGTNy3HHHFZ2yVnr16pXatWvnrrvuKjoFAAAAAAAAAACAr6HXX389Tz31VPr161d0ypdWKpVywgknZNSoUVm8eHHROau1fPnyjBgxIkcddVTq169fdA4AAAAAAAAAABuJsrKyDBgwIHfffXc++OCDonMAAAAAAAAAAAAAAAA2uNGjR+cb3/hG9t5773U+d9++fXPfffflo48+WudzV2ezZ8/OokWL0rlz59WO6dy5c6ZOnZqlS5duwDIAgOqvVHQAAAAAAAAAAAAAAAAA8MWNGjUqDRs2zP777190ylpp1KhRDjrooNx+++1FpwAAAAAAAAAAAPA1NHr06NSqVSuHHXZY0SnrxFFHHZUPPvgg48ePLzpltSZOnJh58+ZlwIABRacAAAAAAAAAALCR6d+/fxYtWpR77rmn6BQAAAAAAAAAAAAAAIANbtSoUTn88MNTq1atdT5337598/777+fBBx9c53NXZ5MmTUqSdOzYcbVjOnXqlMWLF2fWrFkbKgsA4CuhVHQAAAAAAAAAAAAAAAAA8MXdfffdOeyww1K3bt2iU9ba0Ucfnaeffjrz5s0rOgUAAAAAAAAAAICvmbvvvjv77bdfGjduXHTKOtG6det861vfyqhRo4pOWa0RI0akefPm+fa3v110CgAAAAAAAAAAG5lmzZplr732yogRI4pOAQAAAAAAAAAAAAAA2KBmzpyZmTNnpnfv3utl/rZt26Zt27a566671sv81dXmm2+eE0888TPXp+3QoUN69eqV5cuXb7gwAICvgFLRAQAAAAAAAAAAAAAAAMAX8+KLL+a5555bbzfAr2+HHnpo6tSpk3vuuafoFAAAAAAAAAAAAL5G3nzzzTzxxBPp06dP0SnrVO/evXPffffl448/LjplJYsXL86dd96Z/v37p1SyPDoAAAAAAAAAACsbMGBAHnroobz22mtFpwAAAAAAAAAAAAAAAGwwo0ePziabbJL9999/vZ2jd+/e+cMf/pAlS5ast3NUNwcffHD+93//9zPHlJeXZ9SoUdlll102UBUAwFeD1egBAAAAAAAAAAAAAACgmho1alTq16+fAw88sOiUL6RBgwbZf//9M2bMmKJTAAAAAAAAAAAA+BoZM2ZMSqVSjjjiiKJT1qk+ffpk4cKFefjhh4tOWcm9996bhQsXpn///kWnAAAAAAAAAACwkerTp0/q1q2bkSNHFp0CAAAAAAAAAAAAAACwwYwePTqHHHJI6tatu97OccQRR+S9997Lk08+ud7OAQAA/1QqOgAAAAAAAAAAAAAAAAD4YkaNGpVDDjkk9evXLzrlCzvyyCMzceLELFiwoOgUAAAAAAAAAAAAvibuvvvu7LPPPtlss82KTlmn2rVrl5YtW2bMmDFFp6xk+PDh6dGjR1q2bFl0CgAAAAAAAAAAG6ny8vJ897vfzfDhw1NZWVl0DgAAAAAAAAAAAAAAwHr3yiuvZMqUKenVq9d6PU/Hjh2z7bbb5r777luv5wEAgCSpWXQAAAAAAAAAAAAAAAAA8MVcfvnl2WyzzYrO+FIOP/zw1KhRI/Xr1y86BQAAAAAAAAAAgK+JQYMGpWbNr94S3WVlZfnlL3+ZLbfcsuiUlZx//vmprKwsOgMAAAAAAAAAgI3cOeeckzfeeCOVlZUpKysrOgcAAAAAAAAAAAAAAGC92nbbbfPggw9m9913X6/nKSsry2233ZYWLVqs1/MAAECSfPWeBAAAAAAAAAAAAAAAAABfEwcddFDRCV/aFltskRNOOKHoDAAAAAAAAAAAAL5G9tlnn6IT1ptDDz206IRV2muvvYpOAAAAAAAAAACgGujYsWM6duxYdAYAAAAAAAAAAAAAAMAGUatWrey3334b5Fx77LHHBjkPAACUig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPoqFR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPVVKjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOqrVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVXqegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKqvUtEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRfpaIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi+ahYdAAAAAAAAAAAAAAAAAKy9Tz75JIMHD06SDBo0KLVr1y64aO19FT4DAAAAAAAAAAAA1ctX+dq1jfWzbaxdAAAAAAAAAABsXFxnAgAAAAAAAAAAAAAAfN1sqPsp3LexojX9PnxvAABfTKnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqr1LRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUX6WiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACovkpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQfZWKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+ioVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA9VUqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6qtUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Vep6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq9S0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVF+logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqL5KRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUH2Vig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPoqFR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPVVKjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOqrVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVXqegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKqvUtEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRfpaIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi+SkUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB9lYoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD6KhUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1VSo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDqq1R0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVV6noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqr1LRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUX6WiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACovkpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQfZWKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+ioVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA9VUqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6qtUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Vep6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq9S0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVF+logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqL5KRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUH2Vig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPoqFR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPVVKjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOqrVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVXqegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKqvUtEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRfpaIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi+SkUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB9lYoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKD6KhUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED1VSo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDqq1R0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVV6noAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqr1LRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUX6WiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACovkpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQfZWKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg+ioVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA9VUqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6qtUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Vep6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqq9S0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVF+logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqL5KRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUH2Vig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPoqFR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPVVKjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOqrVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVXqegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKqvUtEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRfpaIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi+SkUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB9lYoOAAAAAAAAAAAAAAAAAAAA+H/s3X+81/P9P/7beXU6R7+pobzf6YdqMkk0PzehlN+/wrCNmPwKayGfNPoxhFHEMIzY3nj7VczPeqdIYX6UbWZYEy6T1bJKtHOqcz5/7PM5n2/fYufYqXNOrtfL5Vy8Ho/H/f543B7P/nldupxnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi4CnUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGq1DXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABouAp1HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhqtQ1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLgKdR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIarUNcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi4CnUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGq1DXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABouAp1HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhqtQ1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLgKdR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIarUNcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi4CnUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGq1DXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABouAp1HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhqtQ1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLgKdR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIarUNcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi4CnUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGq1DXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABouAp1HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhqtQ1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLgKdR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIarUNcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi4CnUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGq1DXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABouAp1HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhqtQ1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLgKdR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIarUNcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi4CnUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGq1DXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABouAp1HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhqtQ1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLgKdR0AAICNa9CgQTnyyCOrVbtgwYIUFRVl3rx5GzQTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBwFeo6AAAAtW/QoEEpKipKUVFRSkpK0qVLl4wdOzarV6/O9ddfn0mTJtXaWa+//noOP/zwbLXVVtlss83SsWPHfOc738miRYtq7QwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoP4qrusAAABsGAceeGDuvPPOlJWV5YknnsiQIUPSuHHjjBgxotbOWLx4cfr27ZtDDz00Tz/9dDbffPMsWLAgjz76aD799NNaOwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqL+K6zoAAAAbRmlpadq2bZskOeusszJ58uQ8+uijeeutt7J06dJMmTIlSVJRUZFrrrkmt956az744INsvfXWOeOMMzJy5Mh19lyzZk0GDx6cOXPmZOrUqXnttdeybNmy3H777Sku/udXy06dOmW//far6pk0aVKGDh2apUuXVs1NmTIlRx11VCorK6vmfv3rX2fs2LH53e9+l+bNm+fb3/52Jk+enCQpKyvLpZdemnvuuSeLFi1K+/btM2LEiPzgBz9Ikvz+97/PhRdemFmzZqVZs2bp379/JkyYkK997WtJkgcffDBjxozJn/70pzRt2jS9evXKI488kmbNmmXmzJkZPnx43njjjTRu3Djf+MY3cs8996RDhw6194cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJu6iorksyVfrre8PI2z6p+fVyxOSkpqL9fGsincAQAAAAAAAAAAAAAA2Hg21rsIDeGdh42ZsbpnNYTnBgCwMa34pFplxRs4BgAA9USTJk2yZMm6/9jMiBEjctttt2XChAn51re+lYULF+aPf/zjOnVlZWU54YQTsmDBgsyaNStbbrllPvzww6xevTqTJ0/OMccck6Kioi+V7fHHH89RRx2VkSNH5u677055eXmeeOKJqvWTTjopL7zwQiZOnJiePXvm3Xffzd/+9rckydKlS7P//vvntNNOy4QJE7Jy5cpcdNFFOe644/LMM89k4cKFOeGEE3L11VfnqKOOyieffJJZs2alsrIyq1evzpFHHpnBgwfn3nvvTXl5eX7zm9987j3KyspSVlZWNV6+fPmXui8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbFIqKpIr2yflK75Ue0mSkf93MPHG2kq1UW0KdwAAAAAAAAAAAAAAADaejfUuQkN452FjZqzuWQ3huQEAbFRlldUqK97AMQAAqGOVlZWZPn16nn766Zx77rlZvHhx1donn3yS66+/PjfeeGNOPvnkJMl2222Xb33rW2vtsWLFihxyyCEpKyvLjBkz0qpVqyTJHnvskYsvvjgnnnhizjzzzOy2227Zf//9c9JJJ2XrrbeudsbLL788xx9/fMaMGVM117NnzyTJ22+/nfvvvz/Tpk1Lv379kiSdO3euqrvxxhvTq1evXHHFFVVzd9xxR9q3b5+33347K1asyOrVq3P00UenQ4cOSZIePXokST7++OMsW7Yshx56aLbbbrskSffu3T8357hx49bKCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk+WxJUr6irlMAAAAAAAAAAAAAAAAAAAB1qLiuAwAAsGE89thjad68eVatWpWKioqceOKJGT16dIYMGVJV8+abb6asrCx9+/b9wr1OOOGE/Od//meeeeaZNGnSZK21yy+/PMOGDcszzzyTl156KbfcckuuuOKKPPfcc+nRo0e1ss6bNy+DBw/+3LVGjRqlT58+611//fXXM2PGjDRv3nydtfnz56d///7p27dvevTokQEDBqR///455phjssUWW6R169YZNGhQBgwYkAMOOCD9+vXLcccdl3bt2q33rBEjRmTYsGFV4+XLl6d9+/bVuiMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfCWc9VLSrE2NWsrLy/PTiTclSS487+yUlJRsiGQb1KZwBwAAAAAAAAAAAAAAYOPZWO8iNIR3HjZmxuqe1RCeGwDARrX8k+TK7f5lWfFGiAIAQB3Yb7/9cvPNN6ekpCTbbLNNiovX/erXpEmTau118MEH51e/+lVeeOGF7L///uust2nTJscee2yOPfbYXHHFFenVq1euueaa3HXXXSkUCqmsrFyrftWqVdXO8a8yrlixIocddliuuuqqddbatWuXRo0aZdq0aZkzZ06mTp2aG264ISNHjsxLL72UTp065c4778x5552Xp556Kv/93/+dH//4x5k2bVr22GOPdfYrLS1NaWnpF+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK+0Zm2S5lvWrKe8PKvS+J+fm2+ZlJTUfq4NbVO4AwAAAAAAAAAAAAAAsPFsrHcRGsI7DxszY3XPagjPDQBgY6oorVZZYQPHAACgjjRr1ixdunTJtttum+Li4vXWdO3aNU2aNMn06dO/cK+zzjorV155ZQ4//PA8++yzX1hbUlKS7bbbLp9++mmSZMstt8wnn3xSNU6SefPmrdWz0047fW6GHj16pKKi4nPP3WWXXfLGG2+kY8eO6dKly1o/zZo1S5IUFRVl7733zpgxYzJ37tyUlJRk8uTJVXv06tUrI0aMyJw5c7Ljjjvmnnvu+cI7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/T6GuAwAAUHc222yzXHTRRRk+fHjuvvvuzJ8/Py+++GJ+8YtfrFN77rnn5rLLLsuhhx6a559/Pkny2GOP5Xvf+14ee+yxvP3223nrrbdyzTXX5IknnsgRRxyRJNl9993TtGnTXHzxxZk/f37uueeeTJo0aa29R40alXvvvTejRo3Km2++md/97ne56qqrkiQdO3bMySefnFNPPTVTpkzJu+++m5kzZ+b+++9PkgwZMiQff/xxTjjhhLz88suZP39+nn766ZxyyilZs2ZNXnrppVxxxRV55ZVX8v777+fhhx/O4sWL071797z77rsZMWJEXnjhhbz33nuZOnVq3nnnnXTv3n0DPnUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2LQU13UAAADq1iWXXJLi4uJceuml+fDDD9OuXbuceeaZ660dOnRoKioqcvDBB+epp57KDjvskKZNm+b888/PBx98kNLS0nTt2jW33357vv/97ydJWrdunV/96le58MILc9ttt6Vv374ZPXp0Tj/99Kp999133zzwwAP5yU9+kiuvvDItW7bMPvvsU7V+88035+KLL87ZZ5+dJUuWZNttt83FF1+cJNlmm20ye/bsXHTRRenfv3/KysrSoUOHHHjggSkUCmnZsmWee+65XHfddVm+fHk6dOiQa6+9NgcddFD++te/5o9//GPuuuuuLFmyJO3atcuQIUNyxhlnbMAnDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbluK6DgAAQO2bNGlStdcKhUJGjhyZkSNHrlPbsWPHVFZWrjU3bNiwDBs2rGp86623/ss8Rx55ZI488si15gYPHrzW+Oijj87RRx+93v7NNtss48ePz/jx49e73rVr1zz88MPrXevevXueeuqp9a5tvfXWmTx58r9IDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8kUJdBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg4SrUtGHlypX57LPPqsbvvfderrvuukydOrVWgwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ/xVq2nDEEUfk7rvvTpIsXbo0u+++e6699tocccQRufnmm2s9IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1V6GmDa+99lq+/e1vJ0kefPDBbL311nnvvfdy9913Z+LEibUeEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID6q1DThs8++ywtWrRIkkydOjVHH310CoVC9thjj7z33nu1HhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA+qtQ04YuXbpkypQp+eCDD/L000+nf//+SZJFixalZcuWtR4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPqrUNOGSy+9NBdccEE6duyY3XffPXvuuWeSZOrUqenVq1etBwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg/iquacMxxxyTb33rW1m4cGF69uxZNd+3b98cddRRtRoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPqt+Ms0tW3bNm3btl1rbrfddquVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HMXVKTr66KOrveHDDz/8pcMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LAUV6eoVatWGzoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1QcXWK7rzzzg2dAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGqFDXAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABouIq/TNODDz6Y+++/P++//37Ky8vXWnvttddqJRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9V+hpg0TJ07MKaeckq233jpz587NbrvtljZt2uTPf/5zDjrooA2REQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB6qlDThptuuim33nprbrjhhpSUlGT48OGZNm1azjvvvCxbtmxDZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgnirUtOH999/PXnvtlSRp0qRJPvnkkyTJ97///dx77721mw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAeq1Q04a2bdvm448/TpJsu+22efHFF5Mk7777biorK2s3HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1WqGmDfvvv38effTRJMkpp5ySH/3oRznggAPyne98J0cddVStBwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg/iquacOtt96aioqKJMmQIUPSpk2bzJkzJ4cffnjOOOOMWg8IAED1TZo0KUOHDs3SpUvrOgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8BVRqHFDoZDi4uKq8fHHH5+JEyfm3HPPTUlJSa2GAwBgXYMGDUpRUVGKiopSUlKSLl26ZOzYsVm9enWd5Fm8eHHOOuusbLvttiktLU3btm0zYMCAzJ49u07yAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbV/GXaVq6dGl+85vfZNGiRamoqFhr7aSTTqqVYAAAfL4DDzwwd955Z8rKyvLEE09kyJAhady4cdq1a7fRswwcODDl5eW566670rlz5/z1r3/N9OnTs2TJko2eBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADY+Ipr2vDrX/863/3ud7NixYq0bNkyRUVFVWtFRUU56aSTajUgAADrKi0tTdu2bZMkZ511ViZPnpxHH300Z5xxxlp18+fPz7Bhw/Liiy/m008/Tffu3TNu3Lj069evqqasrCyXXnpp7rnnnixatCjt27fPiBEj8oMf/CBJ8vvf/z4XXnhhZs2alWbNmqV///6ZMGFCvva1r2Xp0qWZNWtWZs6cmT59+iRJOnTokN12261q/wULFqRTp06ZO3dudt555yTJ0qVLs8UWW2TGjBnZd999kyRvvPFGLrroojz33HOprKzMzjvvnEmTJmW77bZLktxxxx259tpr86c//SmtW7fOwIEDc+ONN1btd8EFF+SRRx5JWVlZevfunQkTJqRnz55Jktdffz1Dhw7NK6+8kqKionTt2jU///nP07t377z33ns555xz8vzzz6e8vDwdO3bMT3/60xx88MG1/KcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQ3FRUV+ccnyzfqmeXl5UnFmiTJZ8uWZnVJSYM+59+xMTNW96yG8NwAADamz5ZX7/tycU03Pv/883PqqafmiiuuSNOmTWscDACA2tekSZMsWbJknfkVK1bk4IMPzuWXX57S0tLcfffdOeyww/LWW29l2223TZKcdNJJeeGFFzJx4sT07Nkz7777bv72t78lSZYuXZr9998/p512WiZMmJCVK1fmoosuynHHHZdnnnkmzZs3T/PmzTNlypTsscceKS0t/VL5//KXv2SfffbJvvvum2eeeSYtW7bM7Nmzs3r16iTJzTffnGHDhuXKK6/MQQcdlGXLlmX27NlV/ccee2yaNGmSJ598Mq1atcrPf/7z9O3bN2+//XZat26d7373u+nVq1duvvnmNGrUKPPmzUvjxo2TJEOGDEl5eXmee+65NGvWLH/4wx/SvHnz9eYsKytLWVlZ1Xh5Nb90AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1T0VFRW485TtZ9Y+VG/3sFv/nv78459RN4px/x8bMWN2zGsJzAwDYWP6xalW16opruvFf/vKXnHfeeWnatGmNQwEAULsqKyszffr0PP300zn33HPXWe/Zs2d69uxZNf7JT36SyZMn59FHH80555yTt99+O/fff3+mTZuWfv36JUk6d+5cVX/jjTemV69eueKKK6rm7rjjjrRv3z5vv/12unXrlkmTJmXw4MG55ZZbsssuu6RPnz45/vjjs9NOO1X7Hj/72c/SqlWr3HfffWncuHGSpFu3blXrl112Wc4///z88Ic/rJr75je/mSR5/vnn85vf/CaLFi1KaWlpkuSaa67JlClT8uCDD+b000/P+++/nwsvvDDbb799kqRr165V+7z//vsZOHBgevTosc79///GjRuXMWPGVPteAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED99Y9PlmfVP1bWdQwAANgkFNe0YcCAAXnllVfSuXPnDZEHAIBqeOyxx9K8efOsWrUqFRUVOfHEEzN69Og88MADa9WtWLEio0ePzuOPP56FCxdm9erVWblyZd5///0kybx589KoUaP06dNnvee8/vrrmTFjRpo3b77O2vz589OtW7cMHDgwhxxySGbNmpUXX3wxTz75ZK6++urcfvvtGTRoULXuM2/evHz7299O48aN11lbtGhRPvzww/Tt2/dzM65YsSJt2rRZa37lypWZP39+kmTYsGE57bTT8stf/jL9+vXLsccem+222y5Jct555+Wss87K1KlT069fvwwcODA77bTTes8aMWJEhg0bVjVevnx52rdvX607AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD118nX/CxNW7baKGeVl5fnuhtuSJIMPffclJSUNOhz/h0bM2N1z2oIzw0AYGNavnx5fjy5w7+sK67pxoccckguvPDC/OEPf0iPHj3SuHHjtdYPP/zwmm4JAEAN7bfffrn55ptTUlKSbbbZJsXF6/9ad8EFF2TatGm55ppr0qVLlzRp0iTHHHNMysvLkyRNmjT5wnNWrFiRww47LFddddU6a+3atav6vNlmm+WAAw7IAQcckEsuuSSnnXZaRo0alUGDBqVQKCRJKisrq+pXrVq11l5flKM6Gdu1a5eZM2eus7b55psnSUaPHp0TTzwxjz/+eJ588smMGjUq9913X4466qicdtppGTBgQB5//PFMnTo148aNy7XXXptzzz13nf1KS0tTWlr6hXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIanactWadpq841yVnF5eVJo9M9zW22ekpKSBn3Ov2NjZqzuWQ3huQEAbEyriwrVqiuu6caDBw9OkowdO3adtaKioqxZs6amWwIAUEPNmjVLly5d/mXd7NmzM2jQoBx11FFJkhUrVmTBggVV6z169EhFRUWeffbZ9OvXb53+XXbZJQ899FA6duyY4uLqf3XcYYcdMmXKlCTJlltumSRZuHBhevXqlSSZN2/eWvU77bRT7rrrrqxatSqNGzdea61Fixbp2LFjpk+fnv3222+9GT/66KMUFxenY8eOn5upW7du6datW370ox/lhBNOyJ133ln1XNq3b58zzzwzZ555ZkaMGJHbbrst5557brXvCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfZYWaNlRUVHzuz5o1azZERgAAvqSuXbvm4Ycfzrx58/L666/nxBNPTEVFRdV6x44dc/LJJ+fUU0/NlClT8u6772bmzJm5//77kyRDhgzJxx9/nBNOOCEvv/xy5s+fn6effjqnnHJK1qxZkyVLlmT//ffPr371q/z2t7/Nu+++mwceeCBXX311jjjiiCRJkyZNsscee+TKK6/Mm2++mWeffTY//vGP18p5zjnnZPny5Tn++OPzyiuv5J133skvf/nLvPXWW0mS0aNH59prr83EiRPzzjvv5LXXXssNN9yQJOnXr1/23HPPHHnkkZk6dWoWLFiQOXPmZOTIkXnllVeycuXKnHPOOZk5c2bee++9zJ49Oy+//HK6d++eJBk6dGiefvrpvPvuu3nttdcyY8aMqjUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4F8r1HUAAAA2nPHjx2eLLbbIXnvtlcMOOywDBgzILrvsslbNzTffnGOOOSZnn312tt9++wwePDiffvppkmSbbbbJ7Nmzs2bNmvTv3z89evTI0KFDs/nmm6dQKKR58+bZfffdM2HChOyzzz7Zcccdc8kll2Tw4MG58cYbq8644447snr16uy6664ZOnRoLrvssrUytGnTJs8880xWrFiRPn36ZNddd81tt92Wxo0bJ0lOPvnkXHfddbnpppvyjW98I4ceemjeeeedJElRUVGeeOKJ7LPPPjnllFPSrVu3HH/88Xnvvfey9dZbp1GjRlmyZElOOumkdOvWLccdd1wOOuigjBkzJkmyZs2aDBkyJN27d8+BBx6Ybt265aabbtpgfyYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsKkprmnDxIkT1ztfVFSUzTbbLF26dMk+++yTRo0a/dvhAABY16RJkz53bdCgQRk0aFDVuGPHjnnmmWfWqhkyZMha48022yzjx4/P+PHj17tn165d8/DDD693rbS0NOPGjcu4ceO+MHP37t0zZ86cteYqKyvXGu+00055+umnP3ePM844I2ecccZ611q0aJGJEyd+7nfVe++993P3veGGGz53DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD414pr2jBhwoQsXrw4n332WbbYYoskyd///vc0bdo0zZs3z6JFi9K5c+fMmDEj7du3r/XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQfhZo2XHHFFfnmN7+Zd955J0uWLMmSJUvy9ttvZ/fdd8/111+f999/P23bts2PfvSjDZEXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHqkuKYNP/7xj/PQQw9lu+22q5rr0qVLrrnmmgwcODB//vOfc/XVV2fgwIG1GhQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA+qdQ04aFCxdm9erV68yvXr06H330UZJkm222ySeffPLvpwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgXivUtGG//fbLGWeckblz51bNzZ07N2eddVb233//JMnvfve7dOrUqfZSAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAvFWra8Itf/CKtW7fOrrvumtLS0pSWlqZ3795p3bp1fvGLXyRJmjdvnmuvvbbWwwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQvxTXtKFt27aZNm1a/vjHP+btt99Oknz961/P17/+9aqa/fbbr/YSAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBvFX/Zxu233z7bb799bWYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoIEprk7RsGHD8pOf/CTNmjXLsGHDvrB2/PjxtRIMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPqvuDpFc+fOzapVq6o+f56ioqLaSQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAg1BcnaIZM2as9zMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX22Ff3eD9957L3/4wx9SUVFRG3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaEAK1S284447Mn78+LXmTj/99HTu3Dk9evTIjjvumA8++KDWAwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQfxWqW3jrrbdmiy22qBo/9dRTufPOO3P33Xfn5Zdfzuabb54xY8ZskJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1E/F1S1855130rt376rxI488kiOOOCLf/e53kyRXXHFFTjnllNpPCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC9Vahu4cqVK9OyZcuq8Zw5c7LPPvtUjTt37pyPPvqodtMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUK8VqlvYoUOHvPrqq0mSv/3tb3njjTey9957V61/9NFHadWqVe0nBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDeKq5u4cknn5whQ4bkjTfeyDPPPJPtt98+u+66a9X6nDlzsuOOO26QkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUT8XVLRw+fHg+++yzPPzww2nbtm0eeOCBtdZnz56dE044odYDAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB/FVe3sFAoZOzYsRk7dux61x944IFaCwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw1Co6wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANFyFug4AAMCmb/HixTnrrLOy7bbbprS0NG3bts2AAQMye/bsuo4GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPybius6AAAAm76BAwemvLw8d911Vzp37py//vWvmT59epYsWVLX0T7XqlWr0rhx47qOQS2pqKjI6tUf13UMAAAAAAAAAAAAqFXl5atSKKz6P5+XJGl4v/u4KdwBAAAAAAAAAACAhmVT/t21+nq3+poLAAAAAAAAAIBaVv5xSv7vx/KPk/KimrVvAr9nsincAQAAAAAAAAAAAAAAvorKy5f/fz5/nOLy1Rvp3I3zLkJDeOdhY2as7lkN4bkBAGxM5eWfVKuuqLKysnIDZwEA4Cts6dKl2WKLLTJz5sz06dPnc2suuOCCPPLIIykrK0vv3r0zYcKE9OzZM0kyevToTJkyJeeff34uueSS/P3vf89BBx2U2267LS1atEiSPPjggxkzZkz+9Kc/pWnTpunVq1ceeeSRNGvWLBUVFbnsssty6623ZvHixenevXuuvPLKHHjggUmSBQsWpFOnTrnvvvty00035aWXXsott9ySQYMGrZWzrKwsZWVlVePly5enffv2WbZsWVq2bLkBnh61oaKiIs/N2jlr1nxa11EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANkmFNZXZb/aSJMmMvdukolFRHScCAAAAAAAAAAAAAAConjWrivK7O7ZPkvQ49Y9p1LiyjhMBAED98+mnFTni8AVZtmxZWrZs+bl1hZpuPHbs2Hz22WfrzK9cuTJjx46t6XYAAGzimjdvnubNm2fKlCkpKytbb82xxx6bRYsW5cknn8yrr76aXXbZJX379s3HH39cVTN//vxMmTIljz32WB577LE8++yzufLKK5MkCxcuzAknnJBTTz01b775ZmbOnJmjjz46lZX//Mvj66+/Ptdee22uueaa/Pa3v82AAQNy+OGH55133lkrx//6X/8rP/zhD/Pmm29mwIAB6+QcN25cWrVqVfXTvn372npMbECrV3+cNWs+resYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJusosrKysqaNDRq1CgLFy7MVltttdb8kiVLstVWW2XNmjW1GhAAgIbvoYceyuDBg7Ny5crssssu6dOnT44//vjstNNOef7553PIIYdk0aJFKS0trerp0qVLhg8fntNPPz2jR4/OT3/603z00Udp0aJFkmT48OF57rnn8uKLL+a1117LrrvumgULFqRDhw7rnP8f//EfGTJkSC6++OKqud122y3f/OY387Of/SwLFixIp06dct111+WHP/zh596jrKwsZWVlVePly5enffv2WbZsWVq2bFkbj4oNoLz8b5n1/O5Jkt13ezIlJa3rOBEAAAAAAAAAAADUjvLyVRk//sYkybBh56SkpHEdJ6q5TeEOAAAAAAAAAAAANCyb8u+u1de71ddcAAAAAAAAAADUshVLUjJxtyRJ+Xm/SZq3qVH7pvB7JpvCHQAAAAAAAAAAAAAA4Kvos2XL84tzzkuS/ODGiWnaquVGOXdjvYvQEN552JgZq3tWQ3huAAAb0/Lln2TLLTtn2bJladny878zF9d048rKyhQVFa0z//rrr6d169Y13Q4AgK+AgQMH5pBDDsmsWbPy4osv5sknn8zVV1+d22+/PZ9++mlWrFiRNm3W/gdwVq5cmfnz51eNO3bsmBYtWlSN27Vrl0WLFiVJevbsmb59+6ZHjx4ZMGBA+vfvn2OOOSZbbLFFli9fng8//DB77733Wvvvvffeef3119ea69279xfeo7S0NKWlpV/qGVA/lJS0TknJ1+o6BgAAAAAAAAAAANSS8lRU/POl6pKSNikpKanjPF/GpnAHAAAAAAAAAAAAGpZN+XfX6uvd6msuAAAAAAAAAABqVUnl//tY0jqp8f8/clP4PZNN4Q4AAAAAAAAAAAAAAPDVs7qkuOpzSUnrlJRsvpFO3ljvIjSEdx42ZsbqntUQnhsAwMZT3e9Dxf+65J+22GKLFBUVpaioKN26dUtRUVHV2po1a7JixYqceeaZNU8KAMBXwmabbZYDDjggBxxwQC655JKcdtppGTVqVM4+++y0a9cuM2fOXKdn8803r/rcuHHjtdaKiopSUVGRJGnUqFGmTZuWOXPmZOrUqbnhhhsycuTIvPTSS2nTpk21MzZr1uxL3Q0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvsqKq1t43XXXpbKyMqeeemrGjBmTVq1aVa2VlJSkY8eO2XPPPTdISAAANj077LBDpkyZkl122SUfffRRiouL07Fjxy+9X1FRUfbee+/svffeufTSS9OhQ4dMnjw5w4YNyzbbbJPZs2enT58+VfWzZ8/ObrvtVgs3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICvtuLqFp588slJkk6dOmWvvfZK48aNN1goAAA2HUuWLMmxxx6bU089NTvttFNatGiRV155JVdffXWOOOKI9OvXL3vuuWeOPPLIXH311enWrVs+/PDDPP744znqqKPSu3fvf3nGSy+9lOnTp6d///7Zaqut8tJLL2Xx4sXp3r17kuTCCy/MqFGjst1222XnnXfOnXfemXnz5uW//uu/NvT1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCTV1zThk6dOmXhwoWfu77tttv+W4EAANi0NG/ePLvvvnsmTJiQ+fPnZ9WqVWnfvn0GDx6ciy++OEVFRXniiScycuTInHLKKVm8eHHatm2bffbZJ1tvvXW1zmjZsmWee+65XHfddVm+fHk6dOiQa6+9NgcddFCS5LzzzsuyZcty/vnnZ9GiRdlhhx3y6KOPpmvXrhvy6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwlVBc04aOHTumqKjoc9fXrFnzbwUCAGDTUlpamnHjxmXcuHGfW9OiRYtMnDgxEydOXO/66NGjM3r06LXmhg4dmqFDhyZJunfvnqeeeupz9y8UChk1alRGjRq13vWOHTumsrLyiy8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKxXcU0b5s6du9Z41apVmTt3bsaPH5/LL7+81oIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUP8V17ShZ8+e68z17t0722yzTX7605/m6KOPrpVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANR/hdra6Otf/3pefvnl2toOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAaguKYNy5cvX2tcWVmZhQsXZvTo0enatWutBQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg/iuuacPmm2+eoqKiteYqKyvTvn373HfffbUWDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID6r7imDTNmzFhrXCgUsuWWW6ZLly4pLq7xdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0YMU1bejTp8+GyAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAA1T8ZZreeuut3HDDDXnzzTeTJN27d88555yT7bffvlbDAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFC/FWra8NBDD2XHHXfMq6++mp49e6Znz5557bXX0qNHjzz00EMbIiMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9VRxTRuGDx+eESNGZOzYsWvNjxo1KsOHD8/AgQNrLRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Vuhpg0LFy7MSSedtM789773vSxcuLBWQgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMBRq2rDvvvtm1qxZ68w///zz+fa3v10roQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoGIpr2nD44Yfnoosuyquvvpo99tgjSfLiiy/mgQceyJgxY/Loo4+uVQsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApqu4pg1nn312kuSmm27KTTfdtN61JCkqKsqaNWv+zXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GfFNW2oqKjYEDkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIAKdR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIar+Ms0TZ8+PdOnT8+iRYtSUVGx1todd9xRK8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqP+Ka9owZsyYjB07Nr179067du1SVFS0IXIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AAU17ThlltuyaRJk/L9739/Q+QBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAEp1LShvLw8e+2114bIAgAAdWrmzJkpKirK0qVL6zoKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQYhZo2nHbaabnnnns2RBYAAKi2QYMGpaioKEVFRWncuHE6deqU4cOH5x//+EddRwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAr5Timjb84x//yK233pr/+Z//yU477ZTGjRuvtT5+/PhaCwcAAF/kwAMPzJ133plVq1bl1Vdfzcknn5yioqJcddVVdR0NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4yCjVt+O1vf5udd945hUIhv//97zN37tyqn3nz5m2AiAAAsH6lpaVp27Zt2rdvnyOPPDL9+vXLtGnTkiQVFRUZN25cOnXqlCZNmqRnz5558MEH1+p/4okn0q1btzRp0iT77bdfFixYUAe3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD43+zde5xXdYH/8ff3OwMDgjMomfDzgSGglGle1ktWBIQuuJmyYNZWG9hFDV01sPKyGpiKFayGJtLF0MzUitBYK3ZNU5PULpCooaKoFa5tIsPNQZj5/cE6NQE6w2XOfOH5fDzmMfM953POeX2O/sEfn3O+AAAAAABQ2arbesBdd921PToAAGCrLFy4MPfff3/e9KY3JUkmT56cG2+8Mddee2323Xff3HPPPfnIRz6SPfbYI4MHD85zzz2XUaNG5fTTT88pp5ySX/3qV5kwYcJrXqOhoSENDQ3Nn+vr67frnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgElQXHQAAAFtqzpw56d69e9atW5eGhoaUy+VcffXVaWhoyGWXXZb//u//zlFHHZUk6devX+67777MmDEjgwcPzvTp09O/f/9MnTo1STJw4MA8/PDD+eIXv7jZ602ePDmTJk1ql7kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKWobu3AUaNGtWrcrFmztjgGAADaYujQoZk+fXpWrVqVK664ItXV1Rk9enQeeeSRrF69Osccc0yL8WvXrs0hhxySJHnsscdy5JFHtth/1FFHveb1zjvvvIwfP775c319ffr06bONZgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlam6tQPr6uq2ZwcAALRZt27dMmDAgCTJddddl4MOOijf/OY3c8ABByRJ/vM//zN77bVXi2Nqamq2+Ho1NTVbdTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7IiqWzvwW9/61vbsAACArVIul3P++edn/Pjxefzxx1NTU5Nnn302gwcP3uT4t7zlLbn99ttbbPvlL3/ZHqkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsEMpFx0AAADbyvvf//5UVVVlxowZOeecc/LpT386119/fRYvXpzf/OY3ueqqq3L99dcnSU477bQ88cQT+cxnPpNFixblpptuysyZM4udAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUoOqiAwAAYFuprq7OGWeckS996Ut5+umns8cee2Ty5Ml56qmn0qNHjxx66KE5//zzkyR77713fvCDH+TTn/50rrrqqhxxxBG57LLL8rGPfazgWQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZakuOgAAALbEzJkzN7n93HPPzbnnnpskOeuss3LWWWdt9hzHHXdcjjvuuBbbTj755G3WCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7g3LRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrnLRAQAAsLWWLFmSUqmU+fPnF50CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADudctEBAADwesaOHZtSqdT807Nnz4wYMSK/+93vik4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ1euegAAABojREjRmTp0qVZunRp7rzzzlRXV+e4444rOgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdnrlogMAAKA1ampq0qtXr/Tq1SsHH3xwzj333Dz33HP585//vNHYmTNnpkePHi22zZ49O6VSqcW22267LYceemi6dOmSfv36ZdKkSVm3bt32nAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7HCqiw4AAIC2WrlyZW688cYMGDAgPXv2zKpVq9p8jnvvvTcf/ehHM23atAwaNCiLFy/OKaeckiT5/Oc/v8ljGhoa0tDQ0Py5vr5+yyYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuQctEBAADQGnPmzEn37t3TvXv37Lrrrrn99ttzyy23pFzesn/STpo0Keeee27GjBmTfv365ZhjjskXvvCFzJgxY7PHTJ48OXV1dc0/ffr02dLpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAOo1x0AAAAtMbQoUMzf/78zJ8/Pw8++GCGDx+eY489Ns8888wWnW/BggW5+OKL07179+afT37yk1m6dGlWr169yWPOO++8LF++vPnnueee25opAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAOobroAAAAaI1u3bplwIABzZ+/8Y1vpK6uLl//+tfziU98osXYcrmcpqamFtteeeWVFp9XrlyZSZMmZdSoURtdq0uXLptsqKmpSU1NzZZOAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2SNVFBwAAwJYolUopl8tZs2bNRvv22GOPrFixIqtWrUq3bt2SJPPnz28x5tBDD82iRYsyYMCA9sgFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgB1WddEBAADQGg0NDXn++eeTJMuWLcvVV1+dlStX5n3ve99GY4888sjssssuOf/883PmmWfmgQceyMyZM1uMueiii3Lcccdl7733zoknnphyuZwFCxZk4cKFueSSS9pjSgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwQygXHQAAAK3xk5/8JL17907v3r1z5JFH5qGHHsr3vve9DBkyZKOxu+++e2688cbccccdOfDAA/Pd7343EydObDFm+PDhmTNnTubOnZvDDz88b3/723PFFVfkTW96U/tMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2ENVFBwAAwOuZOXNmZs6cudn9ffv2TVNTU4ttI0eOzMiRI1ts++QnP9ni8/DhwzN8+PBtlQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO6Vy0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVK5y0QEAAOy8nn/++Zx11lkZMGBAunTpkj333DPvfOc7M3369KxevbroPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgFaqLDgAAYOf01FNP5Z3vfGd69OiRyy67LAceeGBqamry8MMP52tf+1r22muvHH/88Rsd98orr6RTp04FFAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAm1JddAAAADuncePGpbq6Or/61a/SrVu35u39+vXLCSeckKampiRJqVTKNddckx//+Me5884785nPfCYTJ07MbbfdlkmTJuXRRx/N//t//y9jxozJBRdckOrqDf/Efemll3LOOefktttuS0NDQw477LBcccUVOeigg5IkEydOzOzZszNhwoRceOGFWbZsWY499th8/etfz6677tr+NwQAAAAAAAAAAAAAAAAAAAAAAAAAXkNjY2OWNSwrOqPirV27NutK65Ikf1nzl3Re37ngom2no86to3YBAAAAAAAAALCNvfxiev7fn395+cWkqtymw3eEdSY7whwAAAAAAAAAAAAAAGBntGbN8ua/X1zzYtZ0Xt8u122vZxEq4ZmH9mxs7bUq4b4BALSnFWtWtGpc9XbuAACAjfzlL3/J3Llzc9lll6Vbt26bHFMqlZr/njhxYi6//PJceeWVqa6uzr333puPfvSjmTZtWgYNGpTFixfnlFNOSZJ8/vOfT5K8//3vT9euXfPjH/84dXV1mTFjRoYNG5bHH388u+++e5Jk8eLFmT17dubMmZNly5blpJNOyuWXX55LL710k00NDQ1paGho/lxfX79N7gcAAAAAAAAAAAAAAAAAAAAAAAAAvJbGxsa847vvyKp1q4pO2TH03fDrttm3FZqxXfTd8KvDza3vhl8drgsAAAAAAAAAgG2ma2NjHvy/v4/90aisKZfbfpK+G35V9DqTvht+VfQcAAAAAAAAAAAAAABgJ1O9rpSPZO8kyfv+c2TWVTe138X7bvi13Z9FaK/rbI2+G361S2Nrr9XacQAAO4H1a9a3atwWPGUMAABb58knn0xTU1MGDhzYYvsb3vCGdO/ePd27d8/nPve55u0f+tCHcvLJJ6dfv37Ze++9M2nSpJx77rkZM2ZM+vXrl2OOOSZf+MIXMmPGjCTJfffdlwcffDDf+973cthhh2XffffNlClT0qNHj3z/+99vPm9jY2NmzpyZAw44IIMGDcq//uu/5s4779xs9+TJk1NXV9f806dPn218ZwAAAAAAAAAAAAAAAAAAAAAAAABgY8salmXVulVFZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxWddEBAADwqgcffDCNjY358Ic/nIaGhubthx12WItxCxYsyC9+8YtceumlzdvWr1+fl19+OatXr86CBQuycuXK9OzZs8Vxa9asyeLFi5s/9+3bN7vuumvz5969e+eFF17YbN95552X8ePHN3+ur69Pnz592j5RAAAAAAAAAAAAAAAAAAAAAAAAANhCPzz+h9mty25FZ1SstWvX5qtXfjVJcvrZp6dz584FF207HXVuHbULAAAAAAAAAIBtbNX/JlcfkST58ftmJd3e0KbDd4R1JjvCHAAAAAAAAAAAAAAAYGe0Zvny3DL3zCTJj947O13r6trluu31LEIlPPPQno2tvVYl3DcAgPa0on5F9vnUPq87rrodWgAAoIUBAwakVCpl0aJFLbb369cvSdK1a9cW27t169bi88qVKzNp0qSMGjVqo3N36dIlK1euTO/evXP33XdvtL9Hjx7Nf3fq1KnFvlKplMbGxs1219TUpKamZrP7AQAAAAAAAAAAAAAAAAAAAAAAAGB7263LbunZtWfRGRVrbdXaVDdteD13z649d6gvOOmoc+uoXQAAAAAAAAAAbGPr//qdoD277J60cZ3TjrDOZEeYAwAAAAAAAAAAAAAA7IxWr61q/nv3rrtnl6492uW67fUsQiU889Ceja29ViXcNwCA9tTplU6tGle9nTsAAGAjPXv2zDHHHJOrr746//Zv/5Zu3bq16fhDDz00ixYtyoABAza7//nnn091dXX69u27DYoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM0pFx0AAMDO6Zprrsm6dety2GGH5ZZbbsljjz2WRYsW5cYbb8zvf//7VFVVbfbYiy66KDfccEMmTZqURx55JI899lhuvvnm/Pu//3uS5Oijj85RRx2VkSNHZu7cuVmyZEnuv//+XHDBBfnVr37VXlMEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJ1CddEBAADsnPr375/f/va3ueyyy3LeeeflD3/4Q2pqarL//vvnnHPOybhx4zZ77PDhwzNnzpxcfPHF+eIXv5hOnTrlzW9+cz7xiU8kSUqlUu64445ccMEFOfnkk/PnP/85vXr1yrvf/e7sueee7TVFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgpVBcdAADAzqt379656qqrctVVV212TFNT0ya3Dx8+PMOHD9/scbvuumumTZuWadOmbXL/xIkTM3HixBbbzj777Jx99tmv2w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/FW56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKle56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKld10QEAAAAAAAAAAAAAAABA261fvz5LlizJihUrctddd6W6ujovvPBCevfunUGDBqWqqqqwrnvvvTdLly593Za/ncPPf/7zvOc979ku3W1pAgAAAAAAAAAA6Oh+ce8vsuovqzrkeqhKWK/V1rVrlTCnV7XXurz26Kqk+w4AAAAAAAAAwMbWr1+fe+++u03rPzrq+pe2aMscrJEBAAAAAAAAAAAAAICO6fvf/0H27t+/Xdb6b6/3dv79mMMOO6zd38na1nO057MlrbnW+vXrc/fdd7f4Lvmjjz66Qz3/0dbvlPcsCwDQXkpNTU1NRUcAAEAlqq+vT11dXZYvX57a2tqic9iMtWv/N/fed2SSZNC7Hkjnzm8ouAgAAAAAAAAAAAC23qxZszJ+/Pg888wzzduqq6uzbt26JEnfvn0zderUjBo1qt27JkyYkCVLljRv21zLpuawPbrb0gQAAAAAAAAAANBR/WXNXzLk1iFJkkdOeSRNaze8WrojrYeqhPVabV27VglzelV7rctrj65Kuu8AAAAAAAAAAPyNlX9OpgxIkux/Y488tvjZ5l2tWTPSEde/tEVb5mCNDAAAAAAAAAAAAAAAdCw333hj/vijm5Mk5//gJ1m7fv12X+u/vd7buakxXbp0ycsvv9yq62yL5x7aeo72fLakNdeaNWtWTjvttCxbtqz5u+OTZM8998w111zTIZ7/aOt3ynuWBQDYFurr61NXV5fly5entrZ2s+PK7dgEAAAAAAAAAAAAAAAAbKVZs2blxBNPzNve9rbMmzcvK1asyLx58zJixIiUSqVMnjw5Bx54YE488cTMmjWr3bsOPPDAFl2batncHLZ1d1uaAAAAAAAAAAAAOrI5t89p/vuuu+7qcOuhKmG9VlvXrlXCnF7VXuvy2qOrku47AAAAAAAAAACb99YDDmjzmpGOtv6lLdoyB2tkAAAAAAAAAAAAAACgY5k1a1bGnHxy8+fn/+f57b7Wf3u9t/Pvx9x4440plUo5+uij2+2drG09R3s+W9Kaa82aNSujR4/O//7v/+bYY49tMe6www7rEM9/bMl3ynuWBQBoT6WmpqamoiMAAKAS1dfXp66uLn/6059SW1tbdA6b8dKLz+bX80YmSfbo/NmUy7sWGwQAAAAAAAAAAABboalxfc4674L0G7BfLp44MaVS+a/7mhpz0cSJWbLk6Vz/rZn5/KRJeXrxE7nysktSKlcV3vVqS5JWj92a7rY0be/7AwAAAAAAAAAAsDWaGtfn7AsvSLd/3fAutRlHfz1dOtUkSRobm3Le+eflqScezzeuuCJVBayHWt+4Ph8/+9Ppv99+mXzZ5JTLpeZ9HaFvSxorYU6v6qitW9LVUecCAAAAAAAAAEDrNK19Kb3nnZ0kqf+X/0q5plvzvsbGpkyY8Ok88fjjufFr16Wq6v/WjKxfnw+fcnL2229gpk69YqM1I5s6pqNpyxySVPx8AQAAAAAAAAAAAABgR/LqcwFv3m9gDtplwzr/j156RTp17pzGpsacccYZeXzR45l90y0plcuvc7bWaWpszMgPnZT9Bg7M1VdfnfLffP/25q7ZqmN+vyhNSQa+ecOYpqZk+PDh2W+/fVt1nS3p2tq5bYtrbtv7viiNjU2pX7EiRxxx+CbHjRt3Rp58YlFm33TrNvt/YtvPY8M9S9Ju9xcA2DmsWLkyBw8blOXLl6e2tnaz40pNTU1N7dgFAAA7jPr6+tTV1RWdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb1fLly1NbW7vZ/eV2bAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgB1NddAAAAFS6P/3pT6mtrS06g81YWV+fpx64I0lSKnVLqVQuuAgAAAAAAAAAAAC23CO/fzxf+NKXM23aV/KWN++/0f5HH3skZ511dv5j6tRUVVflrLPOzoWf/Uze+ub9OkTXhZ/9TJK0euzWdLelaXvfHwAAAAAAAAAAgK3xt+uhDj7gkJRKLfcvXLgwnzrtU7n8on/PQfu/td37Fjz6SM69+JJMn3FtDnjrxtcvui9pe2MlzOlVHbV1S7o66lwAAAAAAAAAAGidV9d/XPP1b+XAt71to/2/+93vcvLJJ+eKyy7PIQcdnCT57YL5+fT552bmzJk58MADW3VMR9OWOSSp+PkCAAAAAAAAAAAAAMCO5O+fC6ju3CmllP5m/4J8+F/+JTOmXZ1DDz5km1zzN/N/m1PPPCM33fzdHPy2gzbRtPE1W3tMkuYxDz74YMaOHdvq62xJ19bObVtcs7Xacg+TtEvTlmjLPUvSbvcXANg5rFi5MgcPG/S640pNTU1N7dADAAA7nPr6+tTV1WX58uWpra0tOgcAAAAAAAAAAADYCaxfvz4DBgzIgQcemNmzZ6dcLjfva2xszMiRI7Nw4cIsWrQoo0ePzsKFC/PEE0+kqqqqQ3Q98cQTSdLqsVvT3Zam7X1/AAAAAAAAAAAAtkZHXw/V0fu2pLES5vSqjtq6JV0ddS4AAAAAAAAAALTOzrpmpCO+hwsAAAAAAAAAAAAAAGidIp5t2F7PYDz88MNJ0jymqamp3d/J2pHfA9vaa61fvz4vvvhihg4duslxxx9/fB599NGKeB9w4lkWAGDbqq+vT11dXZYvX57a2trNjitvdg8AAAAAAAAAAAAAAADQoVRVVWXq1KmZM2dORo4cmXnz5mXFihWZN29eTjjhhMyZMyef/OQnM3r06MyZMydTpkxpl4eTX6tr5MiRLVraMra9mgAAAAAAAAAAADqyjr4eqqP3bUljJczpVR21dUu6OupcAAAAAAAAAABonZ11zUhHfA8XAAAAAAAAAAAAAADQOkWs9d9ez2BMnTq1xZgHH3wwl1xySebMmZMTTjihXd7J2pHfA9vaa11xxRVZuXLlJu/b8ccfnzvuuKNi3gfsWRYAoCilpqampqIjAACgEtXX16euri7Lly9PbW1t0TkAAAAAAAAAAADATmTWrFmZMGFClixZ0ryturo669atS5Lss88+mTJlSkaNGtXuXePHj88zzzzTvG1zLZuaw/bobksTAAAAAAAAAABAR9bR10N19L6k7WvXKmFOr2qvdXnt0VVJ9x0AAAAAAAAAgI1tyfqPjrr+pS3aMgdrZAAAAAAAAAAAAAAAoGMpYq3/9npv56bG1NTUpKGhoVXX2Rb3oq3naM9nS1pzrVmzZuW0007LsmXLmr87Pkl69eqVr371qx3i+Y+2fqe8Z1kAgG2hvr4+dXV1Wb58eWprazc7rtTU1NTUjl0AALDDaO0/ugEAAAAAAAAAAAC2h/Xr1+fee+/N0qVLs/vuu+c73/lOVq1aldNOOy3vec97UlVVVUjXmjVr8qlPfSorVqx43Za/nUPv3r0zaNCg7dLdliYAAAAAAAAAAICOrKOvh+rofUnb165Vwpxe1V7r8tqjq5LuOwAAAAAAAAAAG9uS9R8ddf1LW7RlDtbIAAAAAAAAAAAAAABAx1LEWv/t9d7Ovx8zePDg3H///e36Tta2nqM9ny1pzbXWrFmTU089NUuWLMm73vWuDBs2LEOGDOlQz3+05R57lgUA2Bbq6+tTV1eX5cuXp7a2drPjqtuxCQAAAAAAAAAAAAAAANhGqqqqMmTIkCTJ2rVrM2/evCTJ4MGDC304uaqqKn379m1Vy9/OoaM0AQAAAAAAAAAAdGQdfT1UR+9L2r52rRLm9Kr2WpfXVlvSVUn3HQAAAAAAAACAjW3J+o+Ouv6lLdoyB2tkAAAAAAAAAAAAAACgYylirf/2em/n34/p3Llzu7+Tta3naM9nS1pzraqqqvTr1y/9+vXL+eefn86dO7dLW1u09TvlPcsCALSXctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSuctEBAABssGbNmqxevbr58zPPPJMrr7wyc+fOLbAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC1lYsOAABggxNOOCE33HBDkuSll17KkUcemalTp+aEE07I9OnTC64DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANi0ctEBAABs8Jvf/CaDBg1Kknz/+9/PnnvumWeeeSY33HBDpk2bVnAdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCmlYsOAABgg9WrV2fXXXdNksydOzejRo1KuVzO29/+9jzzzDMF1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbFq56AAAADYYMGBAZs+eneeeey4//elP84//+I9JkhdeeCG1tbUF1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbFq56AAAADa46KKLcs4556Rv37458sgjc9RRRyVJ5s6dm0MOOaTgOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATasuOgAAgA1OPPHEvOtd78rSpUtz0EEHNW8fNmxY/vmf/7nAMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAzasuOgAAgA2WL1+ezp0755BDDmmxfcCAAamu9s82AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjKhcdAADABh/84Adz8803b7T91ltvzQc/+MECigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXl+56AAAADZ44IEHMnTo0I22DxkyJA888EABRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr69cdAAAABs0NDRk3bp1G21/5ZVXsmbNmgKKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABeX7noAAAANjjiiCPyta99baPt1157bf7hH/6hgCIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNdXXXQAAAAbXHLJJTn66KOzYMGCDBs2LEly55135qGHHsrcuXMLrgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2LTqogMAANjgne98Z+bNm5cvf/nLufXWW9O1a9e87W1vyze/+c3su+++RecBAAAAAAAAAAAAAAAAAAAAAAAAAB3AG97whqITXlNH7wMAAAAAAAAAAAAAAAAAAAAAAAAAAIAdQVveB+zdwQBAe6kuOgAAgL86+OCD853vfKfoDAAAAAAAAAAAAAAAAAAAAAAAAACgA+rUqVM+8pGPNP/d0XT0PgAAAAAAAAAAAAAAAAAAAAAAAAAAANgRtOV9wN4dDAC0p+qiAwAAdmb19fWpra1t/vu1vDoOAAAAAAAAAAAAAAAAAAAAAAAAANg5NTU1Ze3atc1/l0qlgota6uh9AAAAAAAAAAAAAAAAAAAAAAAAAAAAsCNoy/uAvTsYAGhP5aIDAAB2ZrvttlteeOGFJEmPHj2y2267bfTz6nYAAAAAAAAAAAAAAAAAAAAAAAAAgHXr1mXdunVZsmRJSqVS5s+f3+pjZ86cmR49emy3tnK5nDe+8Y154xvfmHJ506/A7tu3b6688srmz6VSKbNnz95uTX9r7NixGTlyZLtcCwAAAAAAAAAAAAAAAAAAAAAAAAAAALaX1rwP+G+9+m7jJFv0fmMAgNZ6/X+ZAACw3fzsZz/L7rvvniS566678rOf/Wyjn1e3AwAAAAAAAAAAAAAAAAAAAAAAAAA7j7Fjx6ZUKqVUKqVTp07ZZ5998rnPfS4vv/xykqRPnz5ZunRpDjjggG1+3ZEjR25y31133ZV/+qd/Ss+ePbPLLrtk//33z4QJE/LHP/5xq687c+bM5vlu7mfJkiVbdY2vfOUrmTlz5la3AgAAAAAAAAAAAAAAAAAAAAAAAAAAQGsNGTIkZ5999kbbZ86cmR49eiRJJk6cmIMPPjhJ0rdv39d8V+/YsWO3qmd7vd8YACBJqosOAADYmQ0ePHiTfwMAAAAAAAAAAAAAAAAAAAAAAAAAjBgxIt/61rfyyiuv5Ne//nXGjBmT1atX54ILLkhVVVV69erVbi0zZszIuHHjMmbMmPzgBz9I37598+yzz+aGG27I1KlT8x//8R9bdf4PfOADGTFiRPPnUaNG5YADDsjFF1/cvG2PPfbYqmvU1dVt1fEAAAAAAAAAAAAAAAAAAAAAAAAAAACwvT300ENZv359kuT+++/P6NGjs2jRotTW1iZJunbtulXnb+/3GwMAO5dy0QEAAPzVsmXLMmXKlHz84x/Pxz/+8UydOjUvvvhi0VkAAAAAAAAAAAAAAAAAAAAAAAAAQAFqamrSq1ev9OnTJyNHjsywYcNyzz33JEmWLFmSUqmU+fPnN4+//fbbs++++6ZLly4ZOnRorr/++pRKpbz00kstzvvTn/40b3nLW9K9e/eMGDEiS5cuTZJMnDgx119/fW677baUSqWUSqXcfffd+cMf/pAzzzwzZ555Zq677roMGTIkffv2zbvf/e584xvfyEUXXdR87vvuuy+DBg1K165d06dPn5x55plZtWrV6861a9eu6dWrV/NP586ds8suuzR/Xrt2bUaNGpXu3buntrY2J510Uv7nf/6n+fiJEyfm4IMPzowZM9KnT5/ssssuOemkk7J8+fLmMWPHjs3IkSObPzc2NuZLX/pSBgwYkJqamuy999659NJL2/KfCAAAAAAAAAAAAAAAAAAAAAAAAAAAALapPfbYo/ndvLvvvnuS5I1vfGPztptuuin9+/dP586dM3DgwHz7299ucXypVMr06dNz7LHHpmvXrhkwYEDmzJnTvH9T7zd+5JFHctxxx6W2tja77rprBg0alMWLF7fLfAGAHUu56AAAADa455570rdv30ybNi3Lli3LsmXLMm3atOyzzz7NX4QFAAAAAAAAAAAAAAAAAAAAAAAAAOycFi5cmHnz5qVTp06b3P/000/nxBNPzMiRI7NgwYKceuqpueCCCzYat3r16kyZMiXf/va3c8899+TZZ5/NOeeckyQ555xzctJJJ2XEiBFZunRpli5dmne84x353ve+l7Vr1+azn/3sJq/do0ePJMnixYszYsSIjB49Or/73e9yyy235L777ssZZ5yxVXNvbGzMCSeckBdffDE///nP81//9V956qmn8oEPfKDFuCeffDK33nprfvSjH+UnP/lJfvvb32bcuHGbPe95552Xyy+/PBdeeGEeffTR3HTTTdlzzz23qhUAAAAAAAAAAAAAAAAAAAAAAAAAAAC2lx/+8Ic566yzMmHChCxcuDCnnnpqTj755Nx1110txl144YUZPXp0FixYkA996EMZN25cnnjiiU2e849//GPe/e53p6amJj/72c/y61//Oh/72Meybt269pgSALCDqS46AACADU4//fR84AMfyPTp01NVVZUkWb9+fcaNG5fTTz89Dz/8cMGFAAAAAAAAAAAAAAAAAAAAAAAAAEB7mjNnTrp3755169aloaEh5XI5F1988SbHzpgxIwMHDsyXv/zlJMnAgQOzcOHCXHrppS3GvfLKK7n22mvTv3//JMkZZ5zRfM7u3buna9euaWhoSK9evZqPeeKJJ1JbW5vevXu/Zu/kyZPz4Q9/OGeffXaSZN999820adMyePDgTJ8+PV26dNmi+3DnnXfm4YcfztNPP50+ffokSW644Ya89a1vzUMPPZTDDz88SfLyyy/nhhtuyF577ZUkueqqq/Le9743U6dObTGfJFmxYkW+8pWv5Oqrr86YMWOSJP3798+73vWuLWoEAAAAAAAAAAAAAAAAAAAAAAAAAACA7W3KlCkZO3Zsxo0blyQZP358fvnLX2bKlCkZOnRo87j3v//9+cQnPpEkufjii3PHHXfkuuuuy6BBgzY651e/+tXU1dXl5ptvTqdOnZIk++23XzvMBgDYEZWLDgAAYIMnn3wyEyZMSFVVVfO2qqqqjB8/Pk8++WSBZQAAAAAAAAAAAAAAAAAAAAAAAABAEYYOHZr58+fngQceyJgxYzJ27Ni8973v3eTYRYsW5fDDD2+x7Ygjjtho3C677JL+/fs3f+7du3deeOGF1+xoampKqVR63d4FCxZk5syZ6d69e/PP8OHD09jYmKeffvp1j9+cxx57LH369EmfPn2at+2///7p0aNHHnvsseZte++9d/baa6/mz0cddVQaGxuzaNGiTZ6zoaEhw4YN2+IuAAAAAAAAAAAAAAAAAAAA/j97dx6t53T3D/jzHCcn8yTCScgoc2RsKKKmRCMkhhKpKoJoDTE1BFWamCmCpobSiqFqlsacgXgJLaFJkTSmpNE2RBHehFem8/vD8vycRgZpOFLXtdaz+jx733vfn/s+f9TK2vu7AQAAAAAA+CrNmjUrvXv3rtTWu3fvSrV6k0/q837Wt771rbzyyiufO+f06dPzne98J9WqVVu/YQGAb6TSqg4AAMAnevbsmVmzZqV9+/aV2mfNmpVu3bpVUSoAAAAAAAAAAAAAAAAAAAAAAAAAoKrUrl07bdq0SZL89re/Tbdu3fL73/8+Bx544DrP+e+HXRQKhVRUVKx2TLt27fL+++9n/vz5adKkySqvW7RoUX784x/n+OOPX6mvefPm6xb4S1KzZs2qjgAAAAAAAAAAAAAAAAAAAAAAAAAAAMA3QL169fL++++v1L5w4cLUr1+/ChJVpl4vALA+lVR1AAAAPnH88cfnhBNOyCWXXJInn3wyTz75ZC655JKcdNJJOemkk/KXv/yl+AEAAAAAAAAAAAAAAAAAAAAAAAAAvllKSkpy2mmn5eKLL85HH320Un/79u0zbdq0Sm3PPvvsF75PWVlZli9fXqlt//33T1lZWS6++OLPHbNw4cIkSc+ePTNz5sy0adNmpU9ZWdkXzvKpjh075o033sgbb7xRbJs5c2YWLlyYTp06FdvmzZuXf/7zn8Xff/zjH1NSUpL27duvNGfbtm1Ts2bNTJ48eZ1zAQAAAAAAAAAAAAAAAAAAAAAAAAAAwJq0b98+zz///Ertzz//fNq1a/eF5urYsWOmTp1aqW3q1KmVavUmn9Tn/fd7tW3b9nPn7Nq1a5544oksXbr0C2UBAPg8pVUdAACATxx44IFJkhEjRnxuX6FQSEVFRQqFwkqHVgEAAAAAAAAAAAAAAAAAAAAAAAAA//0GDRqUk08+OTfeeGOGDBlSqe/HP/5xLrvsspx66qk54ogjMn369IwdOzZJUigU1voeLVu2zCOPPJLZs2enUaNGqV+/fpo1a5bRo0dn2LBh+eCDD3LIIYekZcuW+fvf/56bbropderUyaWXXppTTz012267bYYNG5ahQ4emdu3amTlzZiZOnJgxY8as83P37ds3Xbp0yUEHHZTLL788y5YtyzHHHJOddtopvXr1Kl5Xo0aNHHroobnkkkvywQcf5Pjjj88BBxyQ8vLyleasUaNGTj311IwYMSJlZWXp3bt33n777bz00ks54ogj1jkrAAAAAAAAAAAAAAAAAAAAAAAAAAAAfNbRRx+dMWPG5Pjjj8/QoUNTvXr1PPDAA/n973+f++677wvNdcopp+SAAw5Ijx490rdv39x333255557MmnSpErX3XnnnenVq1d22GGH3HLLLZk+fXouvfTSz51z2LBh+eUvf5nvf//7Of3001O/fv388Y9/zDbbbJP27duv83MDAN9MJVUdAACAT8yZM2e1n9dff734vwAAAAAAAAAAAAAAAAAAAAAAAADAN09paWkOO+ywXHXVVVm8eHGlvlatWuWuu+7KPffck65du+bqq6/OGWeckSSpXr36Wt/jyCOPTPv27dOrV680btw4U6dOTZIcc8wxmTBhQv7xj39k3333TYcOHTJ06NDUq1cvJ598cpKka9euefzxx/Pyyy/nO9/5Tnr06JGzzjorTZs2/Y+eu1Ao5A9/+EMaNmyYHXfci74i8AAAztxJREFUMX379k3r1q1z++23V7quTZs2+d73vpc99tgj3/3ud9O1a9dcddVVq5z3zDPPzPDhw3PWWWelY8eOGTx4cBYsWPAfZQUAAAAAAAAAAAAAAAAAAAAAAAAAAIDPat26df7nf/4nf/3rX9O3b998+9vfzh133JE777wzu++++xeaa5999skVV1yRSy65JJ07d861116bG264ITvvvHOl60aNGpXbbrstXbt2zc0335xf/epXadeu3efO2ahRozz66KNZtGhRdtppp3zrW9/Kddddl2rVqq3rIwMA32ClVR0AAIBPtGjRoqojAAAAAAAAAAAAAAAAAAAAAAAAAABfE2PHjv3c9mHDhmXYsGEpLy9PRUVFpb699tore+21V/H3eeedly222CI1atRIkgwZMiRDhgypNGafffapNE/jxo0zYcKEz713375907dv39Xm3nrrrVc5Pknmzp1b6fe/P8OnpkyZUul38+bN84c//GG1906So48+OkcfffTn9v37Oy0pKckZZ5yRM844Y43zAgAAAAAAAAAAAAAAAAAAAAAAAAAAwLpaU+3ekSNHZuTIkSu177zzzivV8V1dHd5PNW3atHi/FStW5M033yz2tWzZcqU5u3btmkceeWRNjwEAsEalVR0AAID/77XXXsvll1+eWbNmJUk6deqUE044IVtuuWUVJwMAAAAAAAAAAAAAAAAAAAAAAAAAvu6uuuqqbL311mnUqFGmTp2aX/ziFxk2bFhVxwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL4BSqs6AAAAn3jkkUey1157pXv37undu3eSZOrUqencuXPuu+++7LbbblWcEAAAAAAAAAAAAAAAAAAAAAAAAAD4OnvllVdy7rnn5t13303z5s0zfPjwnH766VUdCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+AYoreoAAAB84rTTTstJJ52UCy+8cKX2U089NbvttlsVJQMAAAAAAAAAAAAAAAAAAAAAAAAAvi5KS1ddWnr06NEZPXr0V5jm62PkyJEZOXJkVccAAAAAAAAAAAAAAAAAAAAAAAAAAACAKlVRUbFS2+pqGwMArE8lVR0AAIBPzJo1K0ccccRK7YcffnhmzpxZBYkAAAAAAAAAAAAAAAAAAAAAAAAAgK+TQqGQsrKylJWVpVAoVHUcAAAAAAAAAAAAAAAAAAAAAAAAAAAA4GtObWMA4KtUUtUBAAD4ROPGjTN9+vSV2qdPn55NN930qw8EAAAAAAAAAAAAAAAAAAAAAAAAAHytLF26NLfccktuueWWLF26tKrjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9zahsDAF+l0qoOAADwTXf22Wfn5JNPzpFHHpkf/ehHef3117P99tsnSaZOnZqLLrooP/nJT6o4JQAAAAAAAAAAAAAAAAAAAAAAAADwdfCvf/2rqiMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxC1jQGAr0ppVQcAAPimGzVqVI466qiceeaZqVu3bi699NKcfvrpSZKmTZtm5MiROf7446s4JQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA5yut6gAAAN90FRUVSZJCoZCTTjopJ510Uv73f/83SVK3bt2qjAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsEalVR0AAICkUChU+l23bt0qSgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8MWUVnUAAACSdu3apVAorPaad9999ytKAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw9kqrOgAAAMmoUaNSv379qo4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCFlVZ1AAAAku9///vZdNNNqzoGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAXVlLVAQAAvukKhUJVRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGclVR0AAOCbrqKioqojAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACss9KqDgAA8E23YsWKqo4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDOSqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqqeoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy4Sqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbrpKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhqukqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsOEqreoAAAAAAAAAAAAAAAAAwH9uk002qeoIRV+nLAAAAAAAAAAAAP9trNECAAAAAAAAAAA2BNY6AQAAAAAAAAAAAAAAG5oNZT/E2uTcUJ4FAID/PqVVHQAAAAAAAAAAAAAAAAD4z1SrVi0//OEPi99lAQAAAAAAAAAA+O9kjRYAAAAAAAAAALAhsNYJAAAAAAAAAAAAAADY0Gwo+yHWJueG8iwAAPx3Kq3qAAAAAAAAAAAAAAAAAMB/plAopEGDBlUdI0lSUVGRJUuWFL8XCoUqTgQAAAAAAAAAAPDf4+u0XgwAAAAAAAAAAGBVrHUCAAAAAAAAAAAAAAA2NBvKfoi1OUfcWeMAAFSlkqoOAAAAAAAAAAAAAAAAAPx3WbZsWZYtW7baa+bOnZtCoZBCoZDu3bt/ofl33nnn4tjp06eve1AAAAAAAAAAAAAAAAAAAAAAAICvgSFDhmSfffZZq2s/reG0uhpMhUIh48aNWy/Zvik+rW3VoEGDLzRuyJAhxbHeOQAAAAAAAAAAAAAArNm4cePSpk2bbLTRRjnxxBOrOs4GaW3OEf/sNSNHjqx0lvgX2csCAABfVElVBwAAAAAAAAAAAAAAAIAvy5tvvpkTTjghbdq0SY0aNbLZZpuld+/eufrqq/Phhx+u1Rz/vgH8UzNmzMhee+2VTTfdNDVq1EjLli0zePDgLFiwYD0/xfo3cuTI4qF+paWl2WSTTbLjjjvm8ssvz8cff/yF5poyZUoKhUIWLly4TlkmTZqUyZMnV2q7884706FDh9SoUSNdunTJgw8+WKn/nnvuyTPPPLNO9wMAAAAAAAAAAPhPvP322zn66KPTvHnzVK9ePeXl5enXr1+mTp36H8278847r/JgmLvvvju77rprGjZsmJo1a6Z9+/Y5/PDD8+c///k/uicAAAAAAAAAAPDVGjJkSLH+U1lZWdq0aZOzzz47y5YtyxVXXJGxY8eut3vNnz8//fv3X2/zJcny5ctz4YUXpkOHDqlZs2Y23njjfPvb387111+/Xu9TlW644Ya8/PLLldqmTJmSnj17pnr16mnTps1Kf6crrrgi8+fP/wpTAgAAAAAAAAAAAABA1Vkf9Vl//OMfZ//9988bb7yRc845Z7XXzp07t7gfY1WfNe3JuPfee7Ptttumfv36qVu3bjp37rzKWrBfR6+++moOO+ywbLHFFqlevXq23HLLHHPMMZkxY0ZVRwMAgM9VWtUBAAAAAAAAAAAAAAAA4Mvw+uuvp3fv3mnQoEHOP//8dOnSJdWrV88LL7yQX//619l8882z1157rdPcb7/9dvr06ZMBAwbkkUceSYMGDTJ37tyMHz8+ixcvXs9Psv4sX748hUIhSdK5c+dMmjQpK1asyDvvvJMpU6bk3HPPzc0335wpU6akbt26X0mmRo0apVGjRsXfTz31VA488MBccMEFGTBgQG699dbss88+ef7557PVVlslSTbeeON88MEHX0k+AAAAAAAAAACAz9pvv/2yZMmS3HjjjWndunXeeuutTJ48Oe+88846zbdkyZKUlZWtsv/UU0/NpZdemuOPPz6jRo1KixYt8vbbb+ehhx7K6aefnocffnid5gUAAAAAAAAAAKrG7rvvnhtuuCEff/xxHnzwwRx77LGpVq1aTj/99PV6n/Ly8vU6X5KMGjUq1157bcaMGZNevXrlgw8+yLRp0/Lee++t93tVlQYNGmTTTTct/p4zZ0723HPPHHXUUfnd736XyZMnZ+jQoWnSpEn69euXJKlfv37q169fVZEBAAAAAAAAAAAAAOAr9Z/WZ120aFEWLFiQfv36pWnTpmu8vlmzZpk/f37x9yWXXJKHH344kyZNKratbl3/5MmTM3jw4Jx33nnZa6+9UigUMnPmzEycOHGt8laVT+vLTps2LX369MlWW22Va6+9Nh06dMj777+fW2+9NWeffXZxfwMAAHydlFR1AAAAAAAAAAAAAAAAAPgyHHPMMSktLc20adNywAEHpGPHjmndunX23nvvPPDAAxk4cGCSZOHChRk6dGgaN26cevXqZdddd82MGTOSJGPHjs2oUaMyY8aMFAqFFAqFjB07NlOnTs3777+f66+/Pj169EirVq2yyy67ZPTo0WnVqlUxw4svvpj+/funTp062WyzzXLwwQfnX//6V7F/5513zvHHH58RI0Zk4403Tnl5eUaOHFnsr6ioyMiRI9O8efNUr149TZs2zfHHH1/sf++993LIIYekYcOGqVWrVvr3759XXnml2D927Ng0aNAg48ePT6dOnVK9evXMmzcvSVJaWpry8vI0bdo0Xbp0yXHHHZfHH388L774Yi666KLiHDfffHN69eqVunXrpry8PD/4wQ+yYMGCJMncuXOzyy67JEkaNmyYQqGQww47LEny2GOPZccdd0yDBg3SqFGjDBgwIK+99toa/25XXHFFdt9995xyyinp2LFjzjnnnPTs2TNjxoxZuz88AAAAAAAAAADAl2ThwoV54oknctFFF2WXXXZJixYtss022+T000/PXnvtlSSZN29e9t5779SpUyf16tXLAQcckLfeeqs4x8iRI9O9e/dcf/31adWqVWrUqJEhQ4bk8ccfzxVXXFFcqzZ37tz88Y9/zMUXX5zLLrssl112Wb7zne+kefPm+da3vpWf/exneeihh1Y776eZV7VG7lN/+MMf0rNnz9SoUSOtW7fOqFGjsmzZsmJ/oVDI9ddfn3333Te1atVK27ZtM378+C/zVQMAAAAAAAAAwH+t6tWrp7y8PC1atMjRRx+dvn37Zvz48RkyZEj22Wef4nUrVqzIxRdfnDZt2qR69epp3rx5zjvvvM+dc/ny5Tn88MPToUOHYp2pQqGQcePGJfmkXlShUMg999yTXXbZJbVq1Uq3bt3y9NNPV5rnuuuuS7NmzVKrVq3su+++ueyyy9KgQYNi//jx43PMMcdk0KBBadWqVbp165YjjjgiJ598cvGali1b5vLLL680b/fu3SvV11q4cGF+/OMfZ7PNNkuNGjWy1VZb5f777y/2T506NTvvvHNq1aqVhg0bpl+/fnnvvfeK7+WCCy5Iq1atUrNmzXTr1i133XVXcex7772Xgw46KI0bN07NmjXTtm3b3HDDDUmSJUuWZNiwYWnSpElq1KiRFi1a5IILLljt3+uaa65Jq1atcumll6Zjx44ZNmxY9t9//4wePXq14wAAAAAAAAAAAAAA4L/R2tRnveyyy9KlS5fUrl07zZo1yzHHHJNFixYlSaZMmZK6desmSXbdddcUCoVMmTIlSfLkk0/mO9/5TmrWrJlmzZrl+OOPz+LFi7PRRhulvLy8+KlTp07xfO7y8vI0bNgwp556ajbddNPUqFEjO+ywQ5599tli5vvuuy+9e/fOKaeckvbt26ddu3bZZ5998qtf/arSs/2nNVpXt6chSV544YXsuuuuqVmzZho1apQf/ehHxfeSpLi35LzzzkvTpk3Tvn37VFRUZMiQIWnbtm2eeOKJ7Lnnntlyyy3TvXv3/OQnP8lvf/vb4vhTTz017dq1S61atdK6deucddZZWbp06X/6JwcAgHVSUtUBAAAAAAAAAAAAAAAAYH175513MmHChBx77LGpXbv2515TKBSSJIMGDcqCBQvy0EMP5bnnnkvPnj3Tp0+fvPvuuxk8eHCGDx+ezp07Z/78+Zk/f34GDx6c8vLyLFu2LPfee28qKio+d/6FCxdm1113TY8ePTJt2rQ8/PDDeeutt3LAAQdUuu7GG29M7dq186c//SkXX3xxzj777EycODFJcvfdd2f06NG59tpr88orr2TcuHHp0qVLceyQIUMybdq0jB8/Pk8//XQqKiqyxx57VNrA/uGHH+aiiy7K9ddfn5deeimbbrrpKt9bhw4d0r9//9xzzz3FtqVLl+acc87JjBkzMm7cuMydOzdDhgxJkjRr1ix33313kmT27NmZP39+8YDEDz/8MCeeeGKmTZuWyZMnp6SkJPvuu29WrFixyvsnydNPP52+fftWauvXr99KBzoCAAAAAAAAAAB81erUqZM6depk3Lhx+fjjj1fqX7FiRfbee++8++67efzxxzNx4sS8/vrrGTx4cKXrXn311dx999255557Mn369FxxxRXZbrvtcuSRRxbXqjVr1iy///3vU6dOnRxzzDGfm+fTdXCrmjdZ/Rq5JHniiSdyyCGH5IQTTsjMmTNz7bXXZuzYsTnvvPMqzT1q1KgccMAB+ctf/pI99tgjBx10UHEOAAAAAAAAAABg3dWsWTNLlixZqf3000/PhRdemDPPPDMzZ87Mrbfems0222yl6z7++OMMGjQo06dPzxNPPJHmzZuv8l5nnHFGTj755EyfPj3t2rXLgQcemGXLliVJpk6dmqOOOionnHBCpk+fnt12222ldUTl5eV59NFH8/bbb6/z865YsSL9+/fP1KlTc8stt2TmzJm58MILs9FGGyVJpk+fnj59+qRTp055+umn8+STT2bgwIFZvnx5kuSCCy7ITTfdlGuuuSYvvfRSTjrppPzwhz/M448/niTF9/XQQw9l1qxZufrqq7PJJpskSa688sqMHz8+d9xxR2bPnp3f/e53admy5WrzqosFAAAAAAAAAAAAAAD/35rqsyZJSUlJrrzyyrz00ku58cYb8+ijj2bEiBFJku233z6zZ89O8sn53fPnz8/222+f1157Lbvvvnv222+//OUvf8ntt9+eJ598MsOGDVtjphEjRuTuu+/OjTfemOeffz5t2rRJv379irVTy8vL89JLL+XFF19c5Rzro0br6vY0LF68OP369UvDhg3z7LPP5s4778ykSZNWer7Jkydn9uzZmThxYu6///5Mnz49L730UoYPH56SkpKVctevX7/4vW7duhk7dmxmzpyZK664Itdff32uu+66Nb4/AAD4MpRWdQAAAAAAAAAAAAAAAABY31599dVUVFSkffv2ldo32WST/N///V+S5Nhjj83AgQPzzDPPZMGCBalevXqS5JJLLsm4ceNy11135Uc/+lHq1KmT0tLSlJeXF+fZdttt89Of/jQ/+MEPctRRR2WbbbbJrrvumkMOOaR4kOGYMWPSo0ePnH/++cVxv/3tb9OsWbO8/PLLadeuXZKka9eu+fnPf54kadu2bcaMGZPJkydnt912y7x581JeXp6+ffumWrVqad68ebbZZpskySuvvJLx48dn6tSp2X777ZMkv/vd79KsWbOMGzcugwYNSpIsXbo0V111Vbp167ZW765Dhw6ZMGFC8ffhhx9e/N66detceeWV2XrrrbNo0aLUqVMnG2+8cZJk0003TYMGDbJixYp89NFH2XPPPVNeXl7cgP/b3/42jRs3zsyZM7PVVlut8v5vvvnmSodBbrbZZnnzzTfXKj8AAAAAAAAAAMCXpbS0NGPHjs2RRx6Za665Jj179sxOO+2U73//++natWsmT56cF154IXPmzEmzZs2SJDfddFM6d+6cZ599NltvvXWSZMmSJbnpppvSuHHj4txlZWWpVatWpbVqL7/8clq3bp3S0v9fSvqyyy7LWWedVfz9j3/8o3goyr/P++STT65xjdyoUaNy2mmn5dBDD03yyTqxc845JyNGjCiubUuSIUOG5MADD0ySnH/++bnyyivzzDPPZPfdd19/LxgAAAAAAAAAAL5BKioqMnny5DzyyCM57rjj8vbbbxf7/vd//zdXXHFFxowZU1zbs+WWW2aHHXaoNMeiRYuy55575uOPP85jjz1WXEu0KieffHL23HPPJMmoUaPSuXPnvPrqq+nQoUN++ctfpn///jn55JOTJO3atctTTz2V+++/vzj+sssuy/7775/y8vJ07tw522+/ffbee+/0799/rZ970qRJeeaZZzJr1qxiLa7WrVsX+y+++OL06tUrV111VbGtc+fOSZKPP/44559/fiZNmpTtttuuOPbJJ5/Mtddem5122inz5s1Ljx490qtXryRJy5Yti/PMmzcvbdu2zQ477JBCoZAWLVqsMe+q6mJ98MEH+eijj1KzZs21fnYAAAAAAAAAAAAAANjQrak+a5KceOKJxetbtmyZc889N0cddVSuuuqqlJWVZdNNN02SbLzxxsVarBdccEEOOuig4ti2bdvmyiuvzE477ZSrr746NWrU+Nw8ixcvztVXX52xY8cW9zdcd911mThxYn7zm9/klFNOyXHHHZcnnngiXbp0SYsWLbLtttvmu9/9bg466KBizdb1UaN1dXsabr311vzf//1fbrrpptSuXTvJJ2egDxw4MBdddFFx70Lt2rVz/fXXp6ysLElyxx13JPnk3PE1+dnPflbpvQ8fPjy33HJLjjnmmDWOBQCA9a2kqgMAAAAAAAAAAAAAAADAV+WZZ57J9OnT07lz53z88ceZMWNGFi1alEaNGqVOnTrFz5w5c/Laa6+tdq7zzjsvb775Zq655pp07tw511xzTTp06JAXXnghSTJjxow89thjleb9dEP6Z+f+tADAp5o0aZIFCxYkSQYNGpSPPvoorVu3zpFHHpl77703y5YtS5LMmjUrpaWl+fa3v10c26hRo7Rv3z6zZs0qtpWVla10j9WpqKhIoVAo/n7uuecycODANG/ePHXr1s1OO+2U5JMDB1fn9ddfzw9+8IO0bt069erVK27sX9M4AAAAAAAAAACAr7P99tsv//znPzN+/PjsvvvumTJlSnr27JmxY8dm1qxZadasWZo1a1a8vlOnTmnQoEGldV0tWrRI48aN1+n+hx9+eKZPn55rr702ixcvTkVFxSrnXZs1cjNmzMjZZ59dqf/II4/M/Pnz8+GHHxbn+uw6tNq1a6devXrFtW4AAAAAAAAAAMDau//++1OnTp3UqFEj/fv3z+DBgzNy5MhK18yaNSsff/xx+vTps9q5DjzwwCxevDgTJkxI/fr113jvz64DatKkSZIU1wHNnj0722yzTaXr//13p06d8uKLL+aPf/xjDj/88CxYsCADBw7M0KFD13jvT02fPj1bbLFF2rVrt8r+VT33q6++mg8//DC77bZbpTVPN910U3FN1NFHH53bbrst3bt3z4gRI/LUU08Vxw8ZMiTTp09P+/btc/zxx2fChAlrnRsAAAAAAAAAAAAAAPjE6uqzJsmkSZPSp0+fbL755qlbt24OPvjgvPPOO5Vqnf67GTNmZOzYsZX2C/Tr1y8rVqzInDlzVjnutddey9KlS9O7d+9iW7Vq1bLNNtsU68HWrl07DzzwQF599dX87Gc/S506dTJ8+PBss802xUzro0br6vY0zJo1K926dUvt2rWLbb17986KFSsye/bsYluXLl1SVlZW/P3Z2rNrcvvtt6d3794pLy9PnTp1cuaZZ+Yf//jHWo8HAID1qbSqAwAAAAAAAAAAAAAAAMD61qZNmxQKhUqbxJOkdevWSZKaNWsmSRYtWpQmTZpkypQpK83RoEGDNd6nUaNGGTRoUAYNGpTzzz8/PXr0yCWXXJIbb7wxixYtysCBA3PRRRetNO7TAwqTTzbef1ahUMiKFSuSJM2aNcvs2bMzadKkTJw4Mcccc0x+8Ytf5PHHH19jtk/VrFkzhUJhra+fNWtWWrVqlSRZvHhx+vXrl379+uV3v/tdGjdunHnz5qVfv35ZsmTJaucZMmRIWrduneuuuy5NmzbNihUrstVWW61xXHl5ed56661KbW+99VbKy8vX+hkAAAAAAAAAAAC+TDVq1Mhuu+2W3XbbLWeeeWaGDh2an//85xk+fPhajf/soSir07Zt2zz55JNZunRpca1ZgwYN0qBBg/z9739f47xrs0Zu0aJFGTVqVL73ve+tdE2NGjWK31e31g0AAAAAAAAAAFh7u+yyS66++uqUlZWladOmKS1d+aj5T+tkrckee+yRW265JU8//XR23XXXNV7/2XVAn9am+qLrgEpKSrL11ltn6623zoknnphbbrklBx98cM4444y0atUqJSUlqaioqDRm6dKlxe9rerbV9S9atChJ8sADD2TzzTev1Fe9evUkSf/+/fO3v/0tDz74YCZOnJg+ffrk2GOPzSWXXJKePXtmzpw5eeihhzJp0qQccMAB6du3b+66665V3nNVdbHq1au31n8nAAAAAAAAAAAAAAD4b7Oq+qw777xzBgwYkKOPPjrnnXdeNt544zz55JM54ogjsmTJktSqVetz51u0aFF+/OMf5/jjj1+pr3nz5usl85Zbbpktt9wyQ4cOzRlnnJF27drl9ttvz2GHHbZearSubk/D2vr3+rLt2rVLkvz1r39Njx49Vjnu6aefzkEHHZRRo0alX79+qV+/fn7/+9/n0ksvXet7AwDA+lRS1QEA4LOef/75vPDCC8Xff/jDH7LPPvvkpz/9aZYsWVKFyQAAAAAAAAAAAACADUmjRo2y2267ZcyYMVm8ePEqr+vZs2fefPPNlJaWpk2bNpU+m2yySZKkrKwsy5cvX+M9y8rKsuWWWxbv17Nnz7z00ktp2bLlSnP/+4b11alZs2YGDhyYK6+8MlOmTMnTTz+dF154IR07dsyyZcvypz/9qXjtO++8k9mzZ6dTp05rPf9n/fWvf83DDz+c/fbbr/j7nXfeyYUXXpjvfOc76dChQxYsWLDScyep9I7efffdvPbaaznjjDPSp0+fdOzYMe+9995aZdhuu+0yefLkSm0TJ07Mdtttt07PBAAAAAAAAAAA8GXr1KlTFi9enI4dO+aNN97IG2+8UeybOXNmFi5cuMZ1XZ+3Vu3AAw/MokWLctVVV61TrrVZI9ezZ8/Mnj17pf42bdqkpEQJawAAAAAAAAAAWN9q166dNm3apHnz5iktLf3ca9q2bZuaNWuuVI/p3x199NG58MILs9dee+Xxxx//j3K1b98+zz77bKW2f//9eT5dG/Vp/a3GjRtn/vz5xf4PPvggc+bMKf7u2rVr/v73v+fll1/+3Pm6du26yufu1KlTqlevnnnz5q203qlZs2bF6xo3bpxDDz00t9xySy6//PL8+te/LvbVq1cvgwcPznXXXZfbb789d999d959991VPp+6WAAAAAAAAAAAAAAAsGaf1md97rnnsmLFilx66aXZdttt065du/zzn/9c4/iePXtm5syZn1sj9dMztD/PlltumbKyskydOrXYtnTp0jz77LOrrQfbsmXL1KpVq9J55OujRuuq9jR07NgxM2bMqHTe+tSpU1NSUpL27duvcr7u3bunU6dOufTSS7NixYqV+t9///0kyVNPPZUWLVrkjDPOSK9evdK2bdv87W9/W+vcAACwvn3+LmoAqCI//vGPc9ppp6VLly55/fXX8/3vfz/77rtv7rzzznz44Ye5/PLLqzoiAAAAAAAAAAAAALCBuOqqq9K7d+/06tUrI0eOTNeuXVNSUpJnn302f/3rX/Otb30rffv2zXbbbZd99tknF198cXHj/QMPPJB99903vXr1SsuWLTNnzpxMnz49W2yxRerWrZuJEyfmtttuy/e///20a9cuFRUVue+++/Lggw/mhhtuSJIce+yxue6663LggQdmxIgR2XjjjfPqq6/mtttuy/XXX5+NNtpojc8wduzYLF++PN/+9rdTq1at3HLLLalZs2ZatGiRRo0aZe+9986RRx6Za6+9NnXr1s1pp52WzTffPHvvvfca5162bFnefPPNrFixIu+8806mTJmSc889N927d88pp5ySJGnevHnKysryy1/+MkcddVRefPHFnHPOOZXmadGiRQqFQu6///7sscceqV69eho0aJCGDRvmuuuuy+abb5558+bltNNOW6u/2wknnJCddtopl156afbcc8/cdtttmTZtWqWDDgEAAAAAAAAAAKrCO++8k0GDBuXwww9P165dU7du3UybNi0XX3xx9t577/Tt2zddunTJQQcdlMsvvzzLli3LMccck5122im9evVa7dwtW7bMn/70p8ydOzd16tTJxhtvnO222y7Dhw/P8OHD87e//S3f+9730qxZs8yfPz+/+c1vUigUVntYy9qskTvrrLMyYMCANG/ePPvvv39KSkoyY8aMvPjiizn33HPX9ysEAAAAAAAAAADWQo0aNXLqqadmxIgRKSsrS+/evfP222/npZdeyhFHHFHp2uOOOy7Lly/PgAED8tBDD2WHHXZYp3sed9xx2XHHHXPZZZdl4MCBefTRR/PQQw+lUCgUr9l///3Tu3fvbL/99ikvL8+cOXNy+umnp127dunQoUOSZNddd83YsWMzcODANGjQIGeddValmls77bRTdtxxx+y333657LLL0qZNm/z1r39NoVDI7rvvntNPPz1dunTJMccck6OOOiplZWV57LHHMmjQoGyyySY5+eSTc9JJJ2XFihXZYYcd8v7772fq1KmpV69eDj300Jx11ln51re+lc6dO+fjjz/O/fffn44dOyZJLrvssjRp0iQ9evRISUlJ7rzzzpSXl6dBgwarfC9HHXVUxowZkxEjRuTwww/Po48+mjvuuCMPPPDAOr1nAAAAAAAAAAAAAADYkK2pPmubNm2ydOnS/PKXv8zAgQMzderUXHPNNWuc99RTT822226bYcOGZejQoaldu3ZmzpyZiRMnZsyYMascV7t27Rx99NE55ZRTsvHGG6d58+a5+OKL8+GHHxb3YIwcOTIffvhh9thjj7Ro0SILFy7MlVdemaVLl2a33XZLkvVSo3V1exoOOuig/PznP8+hhx6akSNH5u23385xxx2Xgw8+OJttttkq5ywUCrnhhhvSt2/ffOc738kZZ5yRDh065IMPPsjvf//7/M///E+mTp2atm3bZt68ebntttuy9dZb54EHHsi4cePWKjcAAHwZVn2KAgBUgZdffjndu3dPktx5553Zcccdc+utt2bs2LG5++67qzYcAAAAAAAAAAAAALBB2XLLLfPnP/85ffv2zemnn55u3bqlV69e+eUvf5mTTz4555xzTgqFQh588MHsuOOOOeyww9KuXbt8//vfz9/+9rfiBvP99tsvu+++e3bZZZc0btw4v//979OpU6fUqlUrw4cPT/fu3bPtttvmjjvuyPXXX5+DDz44SdK0adNMnTo1y5cvz3e/+9106dIlJ554Yho0aJCSkrXb1tOgQYNcd9116d27d7p27ZpJkyblvvvuS6NGjZIkN9xwQ771rW9lwIAB2W677VJRUZEHH3ww1apVW+PcL730Upo0aZLmzZtn5513zh133JHTTz89TzzxROrUqZMkady4ccaOHZs777wznTp1yoUXXphLLrmk0jybb755Ro0aldNOOy2bbbZZjjvuuJSUlOSqq67K888/n6222ionnXRSfvGLX6zVM2+//fa59dZb8+tf/zrdunXLXXfdlXHjxmWrrbZaq/EAAAAAAAAAAABfljp16uTb3/52Ro8enR133DFbbbVVzjzzzBx55JEZM2ZMCoVC/vCHP6Rhw4bZcccd07dv37Ru3Tq33377Guc++eSTs9FGG6VTp05p3Lhx5s2blyS55JJLcuutt+bPf/5zBgwYkLZt22bQoEFZsWJFnn766dSrV2+Vc67NGrl+/frl/vvvz4QJE7L11ltn2223zejRo9OiRYv189IAAAAAAAAAAIB1cuaZZ2b48OE566yz0rFjxwwePDgLFiz43GtPPPHEjBo1KnvssUeeeuqpdbpf7969c8011+Syyy5Lt27d8vDDD+ekk05KjRo1itf069cv9913XwYOHJh27drl0EMPTYcOHTJhwoSUlpYmSU4//fTstNNOGTBgQPbcc8/ss88+2XLLLSvd6+67787WW2+dAw88MJ06dcqIESOyfPnyJEm7du0yYcKEzJgxI9tss0222267/OEPfyjOf8455+TMM8/MBRdckI4dO2b33XfPAw88kFatWiVJysrKcvrpp6dr167Zcccds9FGG+W2225LktStWzcXX3xxevXqla233jpz587Ngw8+uNq6YK1atcoDDzyQiRMnplu3brn00ktz/fXXp1+/fuv0ngEAAAAAAAAAAAAAYEO2pvqs3bp1y2WXXZaLLrooW221VX73u9/lggsuWOO8Xbt2zeOPP56XX3453/nOd9KjR4+cddZZadq06RrHXnjhhdlvv/1y8MEHp2fPnnn11VfzyCOPpGHDhkmSnXbaKa+//noOOeSQdOjQIf3798+bb76ZCRMmpH379knWT43W1e1pqFWrVh555JG8++672XrrrbP//vunT58+GTNmzBrn3WabbTJt2rS0adMmRx55ZDp27Jh99tknL7/8ckaNGpUk2WuvvXLSSSdl2LBh6d69e5566qn87Gc/W+vsAACwvhUqKioqqjoEAHyqXr16ee6559K2bdvstttuGTBgQE444YTMmzcv7du3z0cffVTVEQGKPvjgg9SvXz/vv//+ag8oAwAAAAAAAAAAAPgmWbFiRd58880kSXl5+SoPIJw7d25atWqVP//5z+nevfsXvs8XGb9kyZKcf/75SZKf/vSnKSsr+8L3AwAAAAAAAAAA4JvJGrSq4b0DAAAAAAAAAFS9I488Mn/961/zxBNPVHWUr0ShUMi9996bffbZ5ysZb40MAAAAAAAAAAAAAACwLtbmHPG1PWt8VdbHvocNfe/Ehp7/3/23PQ8AUDU++OCD1K9fP++//37q1au3yuu+2H99AsCXrFevXjn33HNz88035/HHH8+ee+6ZJJkzZ04222yzKk4HAAAAAAAAAAAAAMD6tv3222f77bf/QmP69++fzp07f0mJAAAAAAAAAAAAAAAAAAAAAAAAvnkuueSSzJgxI6+++mp++ctf5sYbb8yhhx5a1bG+UgceeGC22GKLLzTmqKOOSp06db6kRAAAAAAAAAAAAAAAAAAAsGEpreoAAPBZl19+eQ466KCMGzcuZ5xxRtq0aZMkueuuu7L99ttXcToAAAAAAAAAAAAAANaXLbbYIq+88kqSpHr16l9o7PXXX5+PPvooSdK8efP1ng0AAAAAAAAAAAAAAAAAAAAAAOCb5plnnsnFF1+c//3f/03r1q1z5ZVXZujQoVUd6yvzaV2sjTba6AuNO/vss3PyyScnSZo0abLecwEAAAAAAAAAAAAAAAAAwIaktKoDAMBnde3aNS+88MJK7b/4xS++cJEJAAAAAAAAAAAAAACqRmnpmrctlZaWpk2bNus0/+abb75O4wAAAAAAAAAAAAAAAAAAAAAAAPh8d9xxR1VHqFLrWhdr0003zaabbrqe0wAAAAAAAAAAAAAAAKza2p4jDgAAVcF/iQLwtbRkyZIsWLAgK1asqNTevHnzKkoEAAAAAAAAAAAAAMDaKBQKKSsrK34HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/nNrc464s8YBAKhKpVUdAAA+6+WXX84RRxyRp556qlJ7RUVFCoVCli9fXiW5li9fnhdeeCEtWrRIw4YNqyQDAAAAAAAAAAAAAMCGYOnSpbnllluSJD/60Y+Km+kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAdbc254g7axwAgKpUWtUBAOCzDjvssJSWlub+++9PkyZNUigUqiTHiSeemC5duuSII47I8uXLs9NOO+Wpp55KrVq1cv/992fnnXeuklwAAAAAAAAAAAAAABuCf/3rX1UdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP7rrM054s4aBwCgqpRWdQAA+Kzp06fnueeeS4cOHao0x1133ZUf/vCHSZL77rsvc+bMyV//+tfcfPPNOeOMMzJ16tQqzQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8XJVUdAAA+q1OnTvnXv/5V1THyr3/9K+Xl5UmSBx98MIMGDUq7du1y+OGH54UXXqjidAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8PVRUtUBAOCzLrrooowYMSJTpkzJO++8kw8++KDS56uy2WabZebMmVm+fHkefvjh7LbbbkmSDz/8MBtttNFXlgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL7uSqs6AAB8Vt++fZMkffr0qdReUVGRQqGQ5cuXfyU5DjvssBxwwAFp0qRJCoVCMdef/vSndOjQ4SvJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG4LSqg4AAJ/12GOPVXWEJMnIkSPTpUuXzJs3L4MGDUr16tWTJBtttFFOO+20Kk4HAAAAAAAAAAAAAPD1tskmm1R1hJV8HTMBAAAAAAAAAACwYbAGDQAAAAAAAAAA+DJYmwQAAAAAAAAAAAAAAKyLtdmT8J/uW1gf+x7snQAA+GYqreoAAPBZO+20U1VHyNKlS7P77rvnmmuuyX777Vep79BDD62iVAAAAAAAAAAAAAAAG4Zq1arlhz/8YfH718HXMRMAAAAAAAAAAAAbBmvQAAAAAAAAAACAL4O1SQAAAAAAAAAAAAAAwLpYmz0J/+m+hfWx78HeCQCAb67Sqg4AAP9u4cKF+c1vfpNZs2YlSTp37pzDDz889evX/0ruX61atfzlL3/5Su4FAAAAAAAAAAAAAPDfplAopEGDBlUdo5KKioosWbKk+L1QKFRxIgAAAAAAAAAAADYUX8d1cQAAAAAAAAAAwIbP2iQAAAAAAAAAAAAAAGBdrM2ehP/0XO/1cS64s8UBAL65Sqo6AAB81rRp07Lllltm9OjReffdd/Puu+/msssuy5Zbbpnnn3/+K8vxwx/+ML/5zW++svsBAAAAAAAAAAAAAPDlWrZsWZYtW7Ze5xw7dmwKhUIKhUJOPPHELzT203EOSQQAAAAAAAAAANjwrOsasCFDhhTHjhs37kvJBgAAAAAAAAAAfLnGjh37ldeP2nnnnYtrj6ZPn77W4/6TWlkAAAAAAAAAAAAAAMCG7T8913t9nAv+6Rxz584t7nHo3r37F5pjXfdVAABQdUqqOgAAfNZJJ52UvfbaK3Pnzs0999yTe+65J3PmzMmAAQO+0mIMy5Yty9VXX51evXrlxz/+cX7yk59U+gAAAAAAAAAAAAAA30xDhgwpbqguKytLmzZtcvbZZ//Hm72ryr333pttt9029evXT926ddO5c+cN5iC9z25ur169ejbffPMMHDgw99xzzxeea+TIkV94c/2n6tWrl/nz5+ecc84ptlVUVOSss85KkyZNUrNmzfTt2zevvPJKpXHz58/P5Zdfvk73BAAAAAAAAAAAYM3efPPNnHDCCWnTpk1q1KiRzTbbLL17987VV1+dDz/8cK3mWN36shtuuCEvv/xypbYpU6akZ8+eqV69etq0aZOxY8dW6r/iiisyf/78dXkcAAAAAAAAAADgK/R1rDl25JFHZv78+dlqq62KbfPmzcuee+6ZWrVqZdNNN80pp5xSKePgwYMzf/78bLfddlURGQAAAAAAAAAAAAAAvlJfZj3SGTNmZK+99sqmm26aGjVqpGXLlhk8eHAWLFiwnp9i/Rs1alRxn0RpaWk22WST7Ljjjrn88svz8ccff6G5pkyZkkKhkIULF65TlkmTJmXy5MmV2u6888506NAhNWrUSJcuXfLggw9W6r/nnnvyzDPPrNP9AACoGqVVHQAAPmvatGm57rrrUlr6//8vqrS0NCNGjEivXr2+shwvvvhievbsmSQrHXpTKBS+shwAAAAAAAAAAAAAwNfP7rvvnhtuuCEff/xxHnzwwRx77LGpVq1aTj/99ErXLVmyJGVlZVWUcs0mT56cwYMH57zzzstee+2VQqGQmTNnZuLEiVUdbbU++16PPPLI4sGFf//733Pvvffm+9//foYMGZJf//rXX0meQqGQ8vLySm0XX3xxrrzyytx4441p1apVzjzzzPTr1y8zZ85MjRo1kiTl5eWpX7/+V5IRAAAAAAAAAADgm+b1119P796906BBg5x//vnp0qVLqlevnhdeeCG//vWvs/nmm2evvfb6j+7RoEGDbLrppsXfc+bMyZ577pmjjjoqv/vd7zJ58uQMHTo0TZo0Sb9+/ZIk9evXt3YMAAAAAAAAAAA2EKuqOdakSZMqyVOrVq1KNa+WL1+ePffcM+Xl5Xnqqacyf/78HHLIIalWrVrOP//8JEnNmjVTs2bNr3VNNAAAAAAAAAAAAAAAWB++zHqkb7/9dvr06ZMBAwbkkUceSYMGDTJ37tyMHz8+ixcvXs9Psv4sX748hUIhSdK5c+dMmjQpK1asyDvvvJMpU6bk3HPPzc0335wpU6akbt26X0mmRo0apVGjRsXfTz31VA488MBccMEFGTBgQG699dbss88+ef7557PVVlslSTbeeON88MEHX0k+AADWj5KqDgAAn1WvXr3MmzdvpfY33njjK/tHkSR57LHHVvl59NFHv7IcAAAAAAAAAAAAAMDXT/Xq1VNeXp4WLVrk6KOPTt++fTN+/PgMGTIk++yzT84777w0bdo07du3T5K88MIL2XXXXVOzZs00atQoP/rRj7Jo0aJKc/72t79N586dU7169TRp0iTDhg0r9i1cuDBDhw5N48aNU69evey6666ZMWNGsX/GjBnZZZddUrdu3dSrVy/f+ta3Mm3atCTJ3/72twwcODANGzZM7dq107lz5zz44INJkvvuuy+9e/fOKaeckvbt26ddu3bZZ5998qtf/apStj/84Q/p2bNnatSokdatW2fUqFFZtmxZsb9QKOT666/Pvvvum1q1aqVt27YZP358sf+9997LQQcdlMaNG6dmzZpp27ZtbrjhhmL/mt7Pqt5r8v8PDdxiiy2y7bbb5qKLLsq1116b6667LpMmTSped9ppp2WHHXbIlltumTZt2uTMM8/M0qVLkyRjx47NqFGjMmPGjBQKhRQKhYwdOzZJctlll6VLly6pXbt2mjVrlmOOOWalv92/q6ioyOWXX56f/exn2XvvvdO1a9fcdNNN+ec//5lx48atdiwAAAAAAAAAAADrxzHHHJPS0tJMmzYtBxxwQDp27JjWrVtn7733zgMPPJCBAwcmWf0avdWtL/s811xzTVq1apVLL700HTt2zLBhw7L//vtn9OjRX8UjAwAAAAAAAAAA69mqao79u9deey177713Nttss9SpUydbb711pTpYSfLxxx/n1FNPTbNmzVK9evW0adMmv/nNb4r9L774Yvr37586depks802y8EHH5x//etfq803YcKEzJw5M7fccku6d++e/v3755xzzsmvfvWrLFmyZP28BAAAAAAAAAAAAAAA2EB8mfVIp06dmvfffz/XX399evTokVatWmWXXXbJ6NGj06pVq2KGNe0P2HnnnXP88cdnxIgR2XjjjVNeXp6RI0cW+ysqKjJy5Mg0b9481atXT9OmTXP88ccX+997770ccsghadiwYWrVqpX+/fvnlVdeKfaPHTs2DRo0yPjx47PVVlulVatW+cc//pEkKS0tTXl5eZo2bZouXbrkuOOOy+OPP54XX3wxF110UXGOm2++Ob169Ur9+vXTvXv3HHvssVmwYEGSZO7cudlll12SJA0bNkyhUMiQIUOSJA8//HB22GGHNGjQII0aNcqAAQPy2muvrfHvdsUVV2T33XfPKaecko4dO+acc85Jz549M2bMmLX6uwMA8PVUUtUBAOCzBg8enCOOOCK333573njjjbzxxhu57bbbMnTo0Bx44IFfeZ5XX301jzzySD766KMkn/yjEAAAAAAAAAAAAADAZ9WsWbN4IN3kyZMze/bsTJw4Mffff38WL16cfv36pWHDhnn22Wdz5513ZtKkSRk2bFhx/NVXX51jjz02P/rRj/LCCy9k/PjxadOmTbF/0KBBWbBgQR566KE899xz6dmzZ/r06ZN33303SXLQQQdliy22yLPPPpvnnnsup512WqpVq5YkOfbYY/Pxxx/nf/7nf/LCCy/koosuSp06dZIk5eXleemll/Liiy+u8tmeeOKJHHLIITnhhBMyc+bMXHvttRk7dmzOO++8SteNGjUqBxxwQP7yl79kjz32yEEHHVTMd+aZZ2bmzJl56KGHMmvWrFx99dXZZJNNkmSt3s/nvdfVOfTQQ9OwYcPcc889xba6detm9OjRmTJlSkaPHp3rrrsuo0ePTvLJOvbhw4enc+fOmT9/fubPn5/BgwcnSUpKSnLllVfmpZdeyo033phHH300I0aMWO3958yZkzfffDN9+/YtttWvXz/f/va38/TTT692LAAAAAAAAAAAAP+5d955JxMmTMixxx6b2rVrf+41hUIhyerX6K1ufdnnefrppyutHUuSfv36WTsGAAAAAAAAAAD/JT5bc+yzFi1alD322COTJ0/On//85+y+++4ZOHBg5s2bV7zmkEMOye9///tceeWVmTVrVq699tpiTbCFCxdm1113TY8ePTJt2rQ8/PDDeeutt3LAAQesNs/TTz+dLl26ZLPNNiu29evXLx988EFeeuml9fTUAAAAAAAAAAAAAADw9fdl1yMtLy/PsmXLcu+996aiouJz51/b/QE33nhjateunT/96U+5+OKLc/bZZ2fixIlJkrvvvjujR4/Otddem1deeSXjxo1Lly5dimOHDBmSadOmZfz48Xn66adTUVGRPfbYI0uXLi1e8+GHH+aiiy7Kr3/96zz66KPF88Q/T4cOHdK/f/9K54EvXbo055xzTv785z/nN7/5Td54440cdthhSZJmzZrl7rvvTpLMnj078+fPzxVXXJHkk/PKf/KTn2TatGmZPHlySkpKst9++2XFihWrvH+ipisAwH+r0qoOAACfdckll6RQKOSQQw7JsmXLkiTVqlXL0UcfnQsvvPAry/HOO+/kgAMOyGOPPZZCoZBXXnklrVu3zhFHHJGGDRvm0ksv/cqyAAAAAAAAAAAAAABfTxUVFZk8eXIeeeSRHHfccXn77bdTu3btXH/99SkrK0uSXHfddfm///u/3HTTTcUN9mPGjMnAgQNz0UUXZbPNNsu5556b4cOH54QTTijOvfXWWydJnnzyyTzzzDNZsGBBqlevnuSTddfjxo3LXXfdlR/96EeZN29eTjnllHTo0CFJ0rZt2+I88+bNy3777VfcDN+6deti33HHHZcnnngiXbp0SYsWLbLtttvmu9/9bg466KDivUaNGpXTTjsthx56aHH8OeeckxEjRuTnP/95ca4hQ4bkwAMPTJKcf/75ufLKK/PMM89k9913z7x589KjR4/06tUrSdKyZcviuFtvvXWN7yfJSu91dUpKStKuXbvMnTu32HbGGWfkzTffLL7bV155JbfddltGjBiRmjVrpk6dOiktLU15eXmluU488cTi95YtW+bcc8/NUUcdlauuumqV9//0Pp89uPDT35/2AQAAAAAAAAAA8OV59dVXU1FRkfbt21dq32STTfJ///d/SZJjjz02AwcOXOMavVWtL/s8b7755ueuHfvggw/y0UcfpWbNmuvpCQEAAAAAAAAAgK/Sv9cc+3fdunVLt27dir/POeec3HvvvRk/fnyGDRuWl19+OXfccUcmTpyYvn37JqlcE2zMmDHp0aNHzj///GLbb3/72zRr1iwvv/xy2rVr97m5VrVm6dM+AAAAAAAAAAAAAAD4pviy65Fuu+22+elPf5of/OAHOeqoo7LNNttk1113zSGHHFJcy7+2+wO6du1aPB+8bdu2GTNmTCZPnpzddtst8+bNS3l5efr27Ztq1aqlefPm2WabbZIkr7zySsaPH5+pU6dm++23T5L87ne/S7NmzTJu3LgMGjQoSbJ06dJcddVV6dKly1rtL+jQoUMmTJhQ/H344YcnSVasWJFatWrlnHPOyR577JFFixalTp062XjjjZMkm266aRo0aFAct99++1Wa97e//W0aN26cl19+uXj++udZ1f4IeyMAADZsJVUdAAA+q6ysLFdccUXee++9TJ8+PdOnT8+7776b0aNHF/+RaG0sXLgwEyZMyC233JKbbrqp0mdtnHTSSalWrVrmzZuXWrVqFdsHDx6chx9++As/FwAAAAAAAAAAAADw3+P+++9PnTp1UqNGjfTv3z+DBw/OyJEjkyRdunRJWVlZ8dpZs2alW7duqV27drGtd+/eWbFiRWbPnp0FCxbkn//8Z/r06fO595oxY0YWLVqURo0apU6dOsXPnDlz8tprryVJfvKTn2To0KHp27dvLrzwwmJ7khx//PE599xz07t37/z85z/PX/7yl2Jf7dq188ADD+TVV1/Nz372s9SpUyfDhw/PNttskw8//LB4/7PPPrvSvY888sjMnz+/eE3yyeb8z85br169LFiwIEly9NFH57bbbkv37t0zYsSIPPXUU2v9fj717+91TSoqKlIoFIq/b7/99uy9997p3r176tWrl5/97GeZN2/eGueZNGlS+vTpk8033zx169bNwQcfnHfeeafSswMAAAAAAAAAALBheOaZZzJ9+vR07tw5H3/88Vqt0QMAAAAAAAAAAL65Vldz7LMWLVqUk08+OR07dkyDBg1Sp06dzJo1q1jravr06dloo42y0047fe59ZsyYkccee6zSOqYOHTokibVMAAAAAAAAAAAAAADwH1if9UjPO++8vPnmm7nmmmvSuXPnXHPNNenQoUNeeOGFJGu/P+Cz54EnSZMmTYrngQ8aNCgfffRRWrdunSOPPDL33ntvli1bluST88BLS0vz7W9/uzi2UaNGad++fWbNmlVsKysrW+keq/Pv54E/99xzGThwYFq2bJl27dplv/32S5I1ngn+yiuv5MADD0zr1q1Tr169tGzZMknyj3/8Y62zAADw36O0qgMAwOepVatWunTpsk5j77vvvhx00EFZtGhR6tWrV+kfVAqFQg455JA1zjFhwoQ88sgj2WKLLSq1t23bNn/729/WKRcAAAAAAAAAAAAA8N9hl112ydVXX52ysrI0bdo0paX/f4tO7dq1v9BcNWvWXG3/okWL0qRJk0yZMmWlvgYNGiRJRo4cmR/84Ad54IEH8tBDD+XnP/95brvttuy7774ZOnRo+vXrlwceeCATJkzIBRdckEsvvTTHHXdccZ4tt9wyW265ZYYOHZozzjgj7dq1y+23357DDjssixYtyqhRo/K9731vpfvXqFGj+L1atWqV+gqFQlasWJEk6d+/f/72t7/lwQcfzMSJE9OnT58ce+yxueSSS9b2NX2h97p8+fK88sor2XrrrZMkTz/9dA4++OAMHz48O++8c1q3bp077rgjl1566WrnmTt3bgYMGJCjjz465513XjbeeOM8+eSTOeKII7JkyZLUqlXrc8eVl5cnSd566600adKk2P7WW2+le/fua/0cAAAAAAAAAAAArJs2bdqkUChk9uzZldpbt26d5P+v3VubNXpfRHl5ed56661KbW+99Vbq1au3xvWCAAAAAAAAAADA18/qao591sknn5yJEyfmkksuSZs2bVKzZs3sv//+WbJkSZK1qzc2cODAXHTRRSv1fbaW1b8rLy/PM888U6nt0zVMn9bDAgAAAAAAAAAAAACAb4Kvqh5po0aNMmjQoAwaNCjnn39+evTokUsuuSQ33njjWu8PWN154M2aNcvs2bMzadKkTJw4Mcccc0x+8Ytf5PHHH19jtk/VrFkzhUIhFRUVa3X9rFmz0qpVqyTJ4sWL069fv/Tr1y8333xzCoVC/vGPf+QHP/hBcZ/EqgwcODAtWrTIddddl6ZNm2bFihXZaqutsnTp0tWOW1VNV3sjAAA2bJ+/KxcAvkLf+973Mnbs2NSrVy/f+973VnvtPffcs8b5hg8fnsMPPzznn39+atWqtU6ZFi9e/Llj33333VSvXn2d5gQAAAAAAAAAAAAA/jvUrl07bdq0WatrO3bsmLFjx2bx4sWpXbt2kmTq1KkpKSlJ+/btU7du3bRs2TKTJ0/OLrvsstL4nj175s0330xpaWlatmy5yvu0a/f/2LvzaK+q+n/8z/flMl8uM1wSGRRUVBxQU3HAAQUHBEUzMwVN/YA4oAKKOAAOqSUkWplYYGEftQLj46woqWQpCuSASASSX8EZCRwY7v390er+JEURwSv6eKz1Xuucs/d+7ec+9w9Y73Xe+2yVrbbaKuecc06OO+64jBs3LkceeWSSf/84vl+/funXr1+GDh2asWPH5swzz/zEOm3atEmdOnWyfPnyyvnnzJmzzutdm6ZNm6ZPnz7p06dP9tlnnwwePDg//vGPP/P+rI9bbrkl77zzTnr37p0k+fOf/5zWrVvn7LPPTvLvH86//PLLa4ypUaNGVq9evca1p59+OuXl5bn22mtTVFSUJLnjjjs+c/62bdumrKwsU6ZMyU477ZQkWbp0af7617+mf//+67UmAAAAAAAAAAAA1l3jxo1z0EEH5YYbbsiZZ55Z+Xzaf1uXZ/Q+6fmytdlzzz1zzz33rHHtwQcfzJ577vm58gMAAAAAAAAAAF8N67rn2LRp09K3b9/Kvb+WLVuWBQsWVLZ37Ngx5eXl+dOf/pSuXbt+bHynTp3yhz/8IW3atElxcfE659tzzz1zxRVX5PXXX0+zZs2S/PuZpdLS0my77bbrXAcAAAAAAAAAAAAAADZ1VbEfaY0aNbLllluu8T7w9fl9wH+rXbt2evTokR49emTAgAHZZptt8uyzz6ZDhw5ZtWpV/vrXv6Zz585Jkrfeeitz5sxZ798RvPjii7nvvvsydOjQyvO33norV111VTbbbLMsXrw4s2bN+ti6k6xxj/6TY+zYsdlnn32SJI8//vg6Zdhzzz0zZcqUDBw4sPKaPV0BADZ9RVUdAADq16+fQqGQJCktLU39+vXX+lkX/+///b+cddZZqVOnznpn2mefffLrX/+68rxQKKS8vDzXXHNN9t9///WuCwAAAAAAAAAAAAB8sxx//PGpVatW+vTpk+eeey6PPPJIzjzzzJxwwglp3rx5kmT48OG59tprM2bMmMydOzfPPPNMrr/++iRJ165ds+eee6ZXr1554IEHsmDBgvz5z3/OsGHDMn369Lz//vs544wzMnXq1Lz88suZNm1annrqqXTo0CFJMnDgwNx///2ZP39+nnnmmTzyyCOVbcOHD8+QIUMyderUzJ8/PzNmzMjJJ5+clStX5qCDDkqSXHLJJfn1r3+dESNG5Pnnn8/s2bNz22235aKLLlrne3DJJZfkj3/8Y/7+97/n+eefz1133VWZYV3uz6d57733snjx4rzyyiv5y1/+kvPPPz/9+vVL//79K5/9bt++fRYuXJg//vGPWbBgQa6//vpMmjRpjTpt2rTJ/PnzM3PmzLz55pv58MMP065du6xcuTLXX399/vGPf+Q3v/lNbrzxxs/MVCgUMnDgwFx++eWZPHlynn322Zx44on51re+lV69eq3zfQMAAAAAAAAAAGD9/exnP8uqVauy66675vbbb8/s2bMzZ86cTJgwIS+++GKqVav2mc/oJZ/8fNna9OvXL//4xz8yZMiQvPjii/nZz36WO+64I+ecc86XtWwAAAAAAAAAAKAKtG/fPhMnTszMmTMza9asfO9730t5eXlle5s2bdKnT5+cfPLJufPOOzN//vxMnTo1d9xxR5JkwIABefvtt3Pcccflqaeeyrx583L//ffnpJNOyurVq9c678EHH5xtt902J5xwQmbNmpX7778/F110UQYMGJCaNWtu9HUDAAAAAAAAAAAAAMBXycbcj/Suu+7K97///dx111156aWXMmfOnPz4xz/OPffck549eyZZ/98HfNT48ePzy1/+Ms8991z+8Y9/ZMKECaldu3Zat26d9u3bp2fPnjn11FPz+OOPZ9asWfn+97+fzTbbrDLDp1m1alUWL16cV199Nc8++2yuv/76dOnSJTvttFMGDx6cJGnVqlVq1KhR+V7vBx54ID/5yU/WqNO6desUCoXcddddeeONN7Js2bI0bNgwjRs3zk033ZS///3vefjhh3Puueeu05rPPvvs3Hfffbn22mvz4osvZvjw4Zk+fXrOOOOMdRoPAMBXU3FVBwCAcePGVR6PHz/+C9fr1q1bpk+fni222GK9a1xzzTU58MADM3369KxYsSJDhgzJ888/n7fffjvTpk37whkBAAAAAAAAAAAAgG+GOnXq5P7778/ZZ5+d3XbbLXXq1Env3r0zatSoyj59+vTJBx98kNGjR2fQoEFp0qRJjj766CRJoVDIPffck2HDhuWkk07KG2+8kbKysuy7775p3rx5qlWrlrfeeisnnnhiXnvttTRp0iRHHXVURowYkSRZvXp1BgwYkFdeeSWlpaXp3r17Ro8enSTp0qVLfvrTn1aObdiwYXbeeec88MAD2XrrrZP8+/nsu+66KyNHjszVV1+d6tWrZ5tttskpp5yyzvegRo0aGTp0aBYsWJDatWtnn332yW233bbO9+fTjB07NmPHjk2NGjXSuHHj7LLLLrn99ttz5JFHVvY54ogjMnDgwAwbNiwrVqzIYYcdlosvvjjDhw+v7NO7d+9MnDgx+++/f5YsWZJx48alb9++GTVqVK6++uoMHTo0++67b374wx/mxBNP/MxcQ4YMyfLly3PaaadlyZIl2XvvvXPfffelVq1a63zfAAAAAAAAAAAAWH9bbrllZsyYkSuvvDJDhw7NK6+8kpo1a2bbbbfNoEGDcvrpp3/mM3rJ2p8v+yRt27bN3XffnXPOOSfXXXddWrZsmZtvvjndunX7ElcOAAAAAAAAAAB82UaNGpWTTz45nTt3TpMmTXL++edn6dKla/T5+c9/ngsvvDCnn3563nrrrbRq1SoXXnhhkuRb3/pWpk2blvPPPz8HH3xwPvzww7Ru3Trdu3dPUVHRWuetVq1a7rrrrvTv3z977rln6tatmz59+mTkyJEbdb0AAAAAAAAAAAAAAPBVtDH3I913331Tp06dnHfeefnnP/+ZmjVrpn379rn55ptzwgknJFn/3wd8VIMGDXLVVVfl3HPPzerVq9OxY8f83//9Xxo3bpwkGTduXM4+++wcfvjhWbFiRfbdd9/cc889qV69+mfWfv7559OiRYtUq1Yt9evXz7bbbpuhQ4emf//+qVmzZpKkadOmGT9+fC688MKMGTMm22+/fS6++OKcdNJJlXU222yzjBgxIhdccEFOOumknHjiiRk/fnxuu+22nHXWWdl+++2z9dZbZ8yYMdlvv/0+M1fnzp3z29/+NhdddFEuvPDCtG/fPnfeeWe23377dbpnAAB8NRUqKioqqjoEAPzHAQcckIkTJ6ZBgwZrXF+6dGl69eqVhx9++BPHTZ48ufL4jTfeyMiRI3PSSSelY8eOH/tC5ogjjlinLO+++25uuOGGzJo1K8uWLUunTp0yYMCAtGjR4vMtCvjaWrp0aerXr5933303paWlVR0HAAAAAAAAAAAAgLUoLy/P4sWLkyRlZWXrvLHAZxk/fnwGDhyYJUuWVMl4AAAAAAAAAAAAqkahUMikSZPSq1evKhn/TbBixYpceeWVSZILL7wwNWrUqOJEAAAAAAAAAABQdfbbb7/stNNO+clPflIl4wEAAAAAAAAAAAAAgE3LF32v94Z4L/hHa3zwwQfZcsstM2PGjOy0006fu9aCBQvStm3b9R6/Pr5u+6N+3dYDAFSNpUuXpn79+nn33XdTWlq61n7FX2ImAPhMU6dOzYoVKz52/YMPPshjjz221nGf9GKZkSNHfuxaoVDI6tWr1ylL/fr1M2zYsHXqCwAAAAAAAAAAAADAN9O7776bkpKSDBgwIFdfffU6jyspKcmqVatSq1atjZgOAAAAAAAAAACAjeW4445L48aN88orr6zzmH79+mXChAkbMRUAAAAAAAAAAPB19bOf/Sw333xznnjiiXTs2HGdxtx66635n//5n7z//vvZaaedNm5AAAAAAAAAAAAAAACAz9C5c+fstNNO+fOf/7zOYw455JA8+uijGzEVAAAbWnFVBwCAJPnb3/5WefzCCy9k8eLFleerV6/Offfdl80222yt48vLyzdohs+yww47fOH5AAAAAAAAAAAAAADYtPXu3Tt77713kqRBgwafa+zMmTOTJNWqVdvAqQAAAAAAAAAAANjY5s6dm+TzPwM2cuTIDBo0KEnSokWLDZ4LAAAAAAAAAAD4err11lvz/vvvJ0latWq1zuOOOOKI7L777kk+/15ZAAAAAAAAAAAAAAAAG0rLli0r93StWbPm5xp78803r9fvKgAAqDrFVR0AAJJkp512SqFQSKFQyAEHHPCx9tq1a+f6669fp1q//vWvc+yxx37si40VK1bktttuy4knnvipGSoqKj61fqFQyOrVq9cpCwAAAAAAAAAAAAAAXw3FxRv+p1T16tVLvXr11mtsu3btNnAaAAAAAAAAAAAAvizr+wxYs2bN0qxZsw2cBgAAAAAAAAAA+LrbbLPN1mvcF9krCwAAAAAAAAAAAAAA2LR90fd6b4j3gv+nRnFx8Xrv6bq+v6sAAKDqfPH/SQLABjB//vxUVFRkiy22yJNPPpmmTZtWttWoUSPNmjVLtWrV1qnWSSedlO7du3/sxTP/+te/ctJJJ+XEE09cawYAAAAAAAAAAAAAAL5+CoVCatSoUXkMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX0df9L3eG+K94N4tDgDwzVVc1QEAIElat26dJCkvL//CtSoqKj7xC45XXnkl9evX/8wMAAAAAAAAAAAAAAB8vaxcuTITJkxIkpx22mmVP64HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAr5Mv+l7vDfFecO8WBwD45iqu6gAAMHny5BxyyCGpXr16Jk+e/Kl9jzjiiLW27bzzzikUCikUCjnwwANTXPz//zO3evXqzJ8/P927d//UHOvq03IAAAAAAAAAAAAAAPDV8+abb1Z1BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjovuh7vTfEe8G9WxwA4JupuKoDAECvXr2yePHiNGvWLL169Vprv0KhkNWrV39qnSSZOXNmunXrlpKSksq2GjVqpE2bNundu/dnjv/ofBUVFWuc/8en5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG+S4qoOAADl5eWfePx5XXrppUmSNm3a5Nhjj02tWrXWO8dDDz2U888/P1deeWX23HPPJMkTTzyRiy66KFdeeeV6ZwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK+b4qoOAACfZcmSJWnQoME69+/Tp88XnnPgwIG58cYbs/fee1de69atW+rUqZPTTjsts2fP/sJzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA10FRVQcAgI+6+uqrc/vtt1eeH3PMMWnUqFE222yzzJo1a63jGjVqlDfffDNJ0rBhwzRq1Gitn3Uxb968NGjQ4GPX69evnwULFnyuNQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNdZcVUHAICPuvHGG3PrrbcmSR588ME89NBDue+++3LHHXdk8ODBeeCBBz5x3OjRo1OvXr0kyU9+8pMvnGO33XbLueeem9/85jdp3rx5kuS1117L4MGD8+1vf/sL1wcAAAAAAAAAAAAA4MvVpEmTqo4AAAAAAAAAAAAAfA6e/QMAAAAAAAAAAAAAAAAAAAAAAAAAgPXzRff23BB7g9pfFADgm6m4qgMAwEctXrw4m2++eZLkrrvuyne+850cfPDBadOmTXbfffe1juvTp0/l8ZQpU7LffvulS5cu2XLLLdcrx69+9asceeSRadWqVWWef/7zn2nfvn3uvPPO9aoJAAAAAAAAAAAAAEDVqF69er7//e9XHgMAAAAAAAAAAABfbZ79AwAAAAAAAAAAAAAAAAAAAAAAAACA9fNF9/bcEHuD2l8UAOCbq7iqAwDARzVs2DD//Oc/s/nmm+e+++7L5ZdfniSpqKjI6tWr16lGzZo1c9VVV+XUU0/Nt771rXTp0iX77bdfunTpkvbt269TjXbt2uVvf/tbHnzwwbz44otJkg4dOqRr164pFArrtzgAAAAAAAAAAAAAAKpEoVBIgwYNqjoGAAAAAAAAAAAAsI48+wcAAAAAAAAAAAAAAAAAAAAAAAAAAOvni+7tWVFRkRUrVlQeFwqFKqkBAMCmqaiqAwDARx111FH53ve+l4MOOihvvfVWDjnkkCTJjBkz0q5du3WqMXbs2Lz00ktZuHBhrrnmmpSUlOTaa6/NNttsk5YtW65zlkKhkIMPPjhnnXVWzjrrrBx00EG+NAEAAAAAAAAAAAAA+IopFAq58847P7VP375906tXry8lz+f14osvZo899kitWrWy0047VXUcAAAAAAAAAAAA2KA+zzN8CxYsSKFQyMyZM9fap1AorNfLfvr27Vs59rOeOwQAAAAAAAAAAAAAAAAAAAAAAAAAgG+6VatWZdWqVVVe47OMHz++ct/RgQMHfq6x67vXKQAAn66oqgMAwEeNHj06Z5xxRrbddts8+OCDKSkpSZIsWrQop59++ueq1bBhwzRu3DgNGzZMgwYNUlxcnKZNm67z+ClTpuTCCy/MKaeckpNPPnmNDwAAAAAAAAAAAADAN81/fvC9ts/w4cOrJNeiRYtyyCGHJEkWLFiQQqGQmTNnrtHnuuuuy/jx4zfovKtXr85VV12VbbbZJrVr106jRo2y++675+abb/5cdS699NLUrVs3c+bMyZQpUzZoRgAAAAAAAAAAAPgy9O3bt/J5who1aqRdu3YZOXJkVq1atVGe4Rs3blxeeumlNa5NnTo1nTp1Ss2aNdOuXbuPzXnddddl0aJFGzQHAAAAAAAAAAAAAAAAAAAAAAAAAABfvk/bC3NTNGnSpOyxxx6pX79+6tWrl+222y4DBw6s6ljrZL/99qv8W9SsWTObbbZZevTokYkTJ37uWsOHD89OO+20XjlKS0uzaNGiXHbZZZXXKioqcskll6RFixapXbt2unbtmrlz564xbtGiRfnJT36yXnMCALB2xVUdAAA+qnr16hk0aNDHrp9zzjnrXOPCCy/M1KlTM2PGjHTo0CFdunTJBRdckH333TcNGzZcpxojRozIyJEjs+uuu6ZFixYpFArrPD8AAAAAAAAAAAAAwNfRokWLKo9vv/32XHLJJZkzZ07ltZKSksrjioqKrF69OsXFG//nS2VlZZ/Zp379+ht83hEjRuQXv/hFbrjhhuy6665ZunRppk+fnnfeeedz1Zk3b14OO+ywtG7deoNnBAAAAAAAAAAAgC9L9+7dM27cuHz44Ye55557MmDAgFSvXj1Dhw7d4HM1aNAgzZo1qzyfP39+DjvssPTr1y+33nprpkyZklNOOSUtWrRIt27dkvz7WcKN8TwhAAAAAAAAAAAAAAAAAAAAAAAAAABfvnXdC3PFihWpUaNGFaX8bFOmTMmxxx6bK664IkcccUQKhUJeeOGFPPjgg1Ud7VN99L6eeuqpGTlyZFatWpVXXnklkyZNyne/+9306dMnI0aM+FLyFAqFj73v/JprrsmYMWNyyy23pG3btrn44ovTrVu3vPDCC6lVq1aSf78j3Z6lAAAbXlFVBwCA/zZ37tzcdNNNufzyyzNy5Mg1Puviqquuyrx583LppZfmtttuy+jRo9OzZ880bNhwnTPceOONGT9+fP7617/mzjvvzKRJk9b4AAAAAAAAAAAAAAB805SVlVV+6tevX/nD8bKysrz44oupV69e7r333uyyyy6pWbNmHn/88cybNy89e/ZM8+bNU1JSkt122y0PPfTQGnXbtGmTK6+8MieffHLq1auXVq1a5aabbqpsX7FiRc4444y0aNEitWrVSuvWrfPDH/6wsr1QKOTOO+9MkrRt2zZJsvPOO6dQKGS//fZLkvTt2ze9evWqHPPhhx/mrLPOSrNmzVKrVq3svffeeeqppyrbp06dmkKhkClTpmTXXXdNnTp10rlz58yZM6eyz+TJk3P66afnmGOOSdu2bbPjjjvmBz/4QQYNGlTZ57777svee++dBg0apHHjxjn88MMzb968NbI//fTTGTlyZAqFQoYPH54k+ec//5nvfOc7adCgQRo1apSePXtmwYIF6/V3AwAAAAAAAAAAgC9DzZo1U1ZWltatW6d///7p2rVrJk+e/LFn+MrLy3PNNdekXbt2qVmzZlq1apUrrrjiE2uuXr06J598crbZZpssXLhwrXPfeOONadu2ba699tp06NAhZ5xxRo4++uiMHj16Qy8TAAAAAAAAAAAAAAAAAAAAAAAAAICvgM/aC/OKK67It771rWy99dZJkmeffTYHHHBAateuncaNG+e0007LsmXL1qj5q1/9Ktttt11q1qyZFi1a5IwzzqhsW7JkSU455ZQ0bdo0paWlOeCAAzJr1qzK9lmzZmX//fdPvXr1Ulpaml122SXTp09Pkrz88svp0aNHGjZsmLp162a77bbLPffckyT5v//7v+y1114ZPHhwtt5662y11Vbp1atXfvrTn66R7Y9//GM6deqUWrVqZYsttsiIESOyatWqyvZCoZCbb745Rx55ZOrUqZP27dtn8uTJle3vvPNOjj/++DRt2jS1a9dO+/btM27cuMr2/74///M//5Ply5dXtq/tviZJnTp1UlZWlpYtW2aPPfbI1VdfnV/84he5+eab8+ijj1b2O//887PVVlulTp062WKLLXLxxRdn5cqVSZLx48dnxIgRmTVrVgqFQgqFQsaPH58kGTVqVDp27Ji6detm8803z+mnn/6xv91/q6ioyE9+8pNcdNFF6dmzZ3bYYYf8+te/zquvvlr5TnQAADaeoqoOAAAfNXbs2HTo0CGXXHJJfv/732fSpEmVn3X9omDGjBkZNmxYnnzyyey1117ZbLPN8r3vfS833XRTXnrppXWqsWLFinTu3PkLrAQAAAAAAAAAAAAA4JvnggsuyFVXXZXZs2dnhx12yLJly3LooYdmypQpmTFjRrp3754ePXpk4cKFa4y79tprs+uuu2bGjBk5/fTT079//8yZMydJMmbMmEyePDl33HFH5syZk1tvvTVt2rT5xPmffPLJJMlDDz2URYsWZeLEiZ/Yb8iQIfnDH/6QW265Jc8880zatWuXbt265e23316j37Bhw3Lttddm+vTpKS4uzsknn1zZVlZWlocffjhvvPHGWu/H8uXLc+6552b69OmZMmVKioqKcuSRR6a8vDxJsmjRomy33XY577zzsmjRogwaNCgrV65Mt27dUq9evTz22GOZNm1aSkpK0r1796xYseLT/wAAAAAAAAAAAADwFVG7du1PfO5t6NChueqqq3LxxRfnhRdeyG9/+9s0b978Y/0+/PDDHHPMMZk5c2Yee+yxtGrVaq1zPfHEE+natesa17p165Ynnnjiiy8EAAAAAAAAAAAAAAAAAAAAAAAAAICvvI/uhTllypTMmTMnDz74YO66664sX7483bp1S8OGDfPUU0/ld7/7XR566KGcccYZleN//vOfZ8CAATnttNPy7LPPZvLkyWnXrl1l+zHHHJPXX3899957b55++ul06tQpBx54YOV7sY8//vi0bNkyTz31VJ5++ulccMEFqV69epJkwIAB+fDDD/Poo4/m2WefzdVXX52SkpIk/35X9vPPP5/nnnturWt77LHHcuKJJ+bss8/OCy+8kF/84hcZP358rrjiijX6jRgxIt/5znfyt7/9LYceemiOP/74ynz/2Qv03nvvzezZs/Pzn/88TZo0SZJPvD9TpkzJsGHD1qj/3/f10/Tp0ycNGzbMvffeW3mtXr16GT9+fF544YVcd911GTt2bEaPHp0kOfbYY3Peeedlu+22y6JFi7Jo0aIce+yxSZKioqKMGTMmzz//fG655ZY8/PDDGTJkyKfOP3/+/CxevHiNPUvr16+f3Xff3Z6lAABfguKqDgAAH3X55ZfniiuuyPnnn7/eNXbcccfsuOOOOeuss5Iks2bNyujRozNgwICUl5dn9erVn1njlFNOyW9/+9tcfPHF650DAAAAAAAAAAAAAOCbZuTIkTnooIMqzxs1apQdd9yx8vyyyy7LpEmTMnny5DU2ETj00ENz+umnJ0nOP//8jB49Oo888ki23nrrLFy4MO3bt8/ee++dQqGQ1q1br3X+pk2bJkkaN26csrKyT+yzfPny/PznP8/48eNzyCGHJEnGjh2bBx98ML/85S8zePDgyr5XXHFFunTpkiS54IILcthhh+WDDz5IrVq1MmrUqBx99NEpKyvLdtttl86dO6dnz56VNZOkd+/ea8z9q1/9Kk2bNs0LL7yQ7bffPmVlZSkuLk5JSUll3gkTJqS8vDw333xzCoVCkmTcuHFp0KBBpk6dmoMPPnit6wcAAAAAAAAAAICqVlFRkSlTpuT+++/PmWeemTfeeKOy7V//+leuu+663HDDDenTp0+SZMstt8zee++9Ro1ly5blsMMOy4cffphHHnkk9evX/9Q5Fy9enObNm69xrXnz5lm6dGnef//91K5dewOtDgAAAAAAAAAAAAAAAAAAAAAAAACAr5JP2guzbt26ufnmm1OjRo0k/36H9QcffJBf//rXqVu3bpLkhhtuSI8ePXL11VenefPmufzyy3Peeefl7LPPrqy92267JUkef/zxPPnkk3n99ddTs2bNJMmPf/zj3Hnnnfn973+f0047LQsXLszgwYOzzTbbJEnat29fWWfhwoXp3bt3OnbsmCTZYostKtvOPPPMPPbYY+nYsWNat26dPfbYIwcffHCOP/74yrlGjBiRCy64oHI/zy222CKXXXZZhgwZkksvvbSyVt++fXPcccclSa688sqMGTMmTz75ZLp3756FCxdm5513zq677pokadOmTeW43/72tx+7P2PGjEnPnj0zbNiwyvdv//d9/TRFRUXZaqut8sorr1Reu+iiiyqP27Rpk0GDBuW2227LkCFDUrt27ZSUlKS4uPhj7ycfOHDgGuMuv/zy9OvXLz/72c/WOv/ixYuT5BP3LP1PGwAAG09xVQcAgI965513cswxx3yhGhUVFZkxY0amTp2aqVOn5vHHH8/SpUuzww47pEuXLutU44MPPshNN92Uhx56KDvssEOqV6++RvuoUaO+UEYAAAAAAAAAAAAAgK+j//xI/j+WLVuW4cOH5+67786iRYuyatWqvP/++1m4cOEa/XbYYYfK40KhkLKysrz++utJ/v3j/IMOOihbb711unfvnsMPPzwHH3zwemecN29eVq5cmb322qvyWvXq1fPtb387s2fPXmuuFi1aJElef/31tGrVKttuu22ee+65PP3005k2bVoeffTR9OjRI3379s3NN9+cJJk7d24uueSS/PWvf82bb76Z8vLyJP/e2GD77bf/xHyzZs3K3//+99SrV2+N6x988EHmzZu33usGAAAAAAAAAACAjemuu+5KSUlJVq5cmfLy8nzve9/L8OHDM2DAgMo+s2fPzocffpgDDzzwU2sdd9xxadmyZR5++OHUrl17Y0cHAAAAAAAAAAAAAAAAAAAAAAAAAGAT82l7YXbs2DE1atSo7Dt79uzsuOOOqVu3buW1vfbaK+Xl5ZkzZ04KhUJeffXVte6ZOWvWrCxbtiyNGzde4/r7779f+d7pc889N6ecckp+85vfpGvXrjnmmGOy5ZZbJknOOuus9O/fPw888EC6du2a3r17V74/u27durn77rszb968PPLII/nLX/6S8847L9ddd12eeOKJ1KlTJ7Nmzcq0adNyxRVXVM69evXqfPDBB3nvvfdSp06dJGu+k7tu3bopLS2tfFd4//7907t37zzzzDM5+OCD06tXr3Tu3Pkz78+8efPSsWPHJPnYff0sFRUVa5zffvvtGTNmTObNm5dly5Zl1apVKS0t/cw6Dz30UH74wx/mxRdfzNKlS7Nq1aqPrR0AgK+WoqoOAAAfdcwxx+SBBx74QjUaNWqU3XffPb/97W/Tvn373HLLLXnzzTfzzDPPZPTo0etU429/+1t22mmnFBUV5bnnnsuMGTMqPzNnzvxC+QAAAAAAAAAAAAAAvq4++kP4JBk0aFAmTZqUK6+8Mo899lhmzpyZjh07ZsWKFWv0q169+hrnhUIh5eXlSZJOnTpl/vz5ueyyy/L+++/nO9/5To4++uiNu5BPyFUoFJKkMleSFBUVZbfddsvAgQMzceLEjB8/Pr/85S8zf/78JEmPHj3y9ttvZ+zYsfnrX/+av/71r0nysfV/1LJly7LLLrtk5syZa3xeeumlfO9739sYywQAAAAAAAAAAIAvbP/998/MmTMzd+7cvP/++7nllls+9lxh7dq116nWoYcemr/97W954okn1ql/WVlZXnvttTWuvfbaayktLV3nOQEAAAAAAAAAAAAAAAAAAAAAAAAA2HR82l6Y/70n5mf5rP0rly1blhYtWnzsvdNz5szJ4MGDkyTDhw/P888/n8MOOywPP/xwtt1220yaNClJcsopp+Qf//hHTjjhhDz77LPZddddc/31168xx5ZbbplTTjklN998c5555pm88MILuf322yvnHzFixBpzP/vss5k7d25q1apVWePT3hV+yCGH5OWXX84555yTV199NQceeGAGDRr0ue7T57mvq1evzty5c9OqVaskyRNPPJHjjz8+hx56aO66667MmDEjw4YN+9T3fSfJggULcvjhh2eHHXbIH/7whzz99NP56U9/muTT3xVeVlaWJJ+4Z+l/2gAA2HiKqzoAAHxUu3btcvHFF+cvf/lLOnbs+LEvUc4666zPrDFhwoTss88+KS0tXe8cjzzyyHqPBQAAAAAAAAAAAADg36ZNm5a+ffvmyCOPTPLvH+QvWLDgc9cpLS3Nsccem2OPPTZHH310unfvnrfffjuNGjVao1+NGjWS/PtH9Guz5ZZbpkaNGpk2bVpat26dJFm5cmWeeuqpDBw48HNn+6htt902SbJ8+fK89dZbmTNnTsaOHZt99tknSfL4449/Zo1OnTrl9ttvT7Nmzb7Qc/EAAAAAAAAAAADwZapbt27atWv3qX3at2+f2rVrZ8qUKTnllFPW2q9///7Zfvvtc8QRR+Tuu+9Oly5dPrXunnvumXvuuWeNaw8++GD23HPPdV8AAAAAAAAAAAAAAAAAAAAAAAAAAACbjHXZC/M/OnTokPHjx2f58uWpW7dukn+/f7uoqChbb7116tWrlzZt2mTKlCnZf//9Pza+U6dOWbx4cYqLi9OmTZu1zrPVVltlq622yjnnnJPjjjsu48aNq3y/9+abb55+/fqlX79+GTp0aMaOHZszzzzzE+u0adMmderUyfLlyyvnnzNnzjqvd22aNm2aPn36pE+fPtlnn30yePDg/PjHP/7U+7Pllluu11y33HJL3nnnnRx66KFJkieeeCKtW7fOsGHDKvu8/PLLa4ypUaPGx95P/vTTT6e8vDzXXnttioqKkiR33HHHZ87ftm3blJWVZcqUKdlpp52SJEuXLs1f//rX9O/ff73WBADAuiuu6gAA8FE33XRTSkpK8qc//Sl/+tOf1mgrFAo566yzPrPGYYcdtrHiAQAAAAAAAAAAAADwObRv3z4TJ05Mjx49UigUcvHFF6e8vPxz1Rg1alRatGiRnXfeOUVFRfnd736XsrKyNGjQ4GN9mzVrltq1a+e+++5Ly5YtU6tWrdSvX3+NPnXr1k3//v0zePDgNGrUKK1atco111yT9957Lz/4wQ/WOdfRRx+dvfbaK507d05ZWVnmz5+foUOHZquttso222yToqKiNG7cODfddFNatGiRhQsX5oILLvjMuscff3x+9KMfpWfPnhk5cmRatmyZl19+ORMnTsyQIUPSsmXLdc4IAAAAAAAAAAAAXyW1atXK+eefnyFDhqRGjRrZa6+98sYbb+T555//2DN8Z555ZlavXp3DDz889957b/bee++11u3Xr19uuOGGDBkyJCeffHIefvjh3HHHHbn77rs39pIAAAAAAAAAAAAAAAAAAAAAAAAAAPiKO/7443PppZemT58+GT58eN54442ceeaZOeGEE9K8efMkyfDhw9OvX780a9YshxxySP71r39l2rRpOfPMM9O1a9fsueee6dWrV6655ppstdVWefXVV3P33XfnyCOPzHbbbZfBgwfn6KOPTtu2bfPKK6/kqaeeSu/evZMkAwcOzCGHHJKtttoq77zzTh555JF06NChct733nsvhx56aFq3bp0lS5ZkzJgxWblyZQ466KAkySWXXJLDDz88rVq1ytFHH52ioqLMmjUrzz33XC6//PJ1ugeXXHJJdtlll2y33Xb58MMPc9ddd1Vm+KT7c/bZZ6d3795p2rTpZ9Z+7733snjx4qxatSqvvPJKJk2alNGjR6dfv37Za6+9kiTt2rXLwoULc9ttt2W33XbL3XffnUmTJq1Rp02bNpk/f35mzpyZli1bpl69emnXrl1WrlyZ66+/Pj169Mi0adNy4403fmamQqGQgQMH5vLLL0/79u3Ttm3bXHzxxfnWt76VXr16rdM9AwBg/RVXdQAA+Kj58+dXdYRK06dPzx133JGFCxdmxYoVa7RNnDixilIBAAAAAAAAAAAAAGw6Ro0alZNPPjmdO3dOkyZNcv7552fp0qWfq0a9evVyzTXXZO7cualWrVp222233HPPPSkqKvpY3+Li4owZMyYjR47MJZdckn322SdTp079WL+rrroq5eXlOeGEE/Kvf/0ru+66a+6///40bNhwnXN169Yt//u//5sf/vCHeffdd1NWVpYDDjggw4cPT3Hxv3+2ddttt+Wss87K9ttvn6233jpjxozJfvvt96l169Spk0cffTTnn39+jjrqqPzrX//KZpttlgMPPDClpaXrnA8AAAAAAAAAAAC+ii6++OIUFxfnkksuyauvvpoWLVqkX79+n9h34MCBKS8vz6GHHpr77rsvnTt3/sR+bdu2zd13351zzjkn1113XVq2bJmbb7453bp125hLAQAAAAAAAAAAAAAAAAAAAAAAAABgE1CnTp3cf//9Ofvss7PbbrulTp066d27d0aNGlXZp0+fPvnggw8yevToDBo0KE2aNMnRRx+dJCkUCrnnnnsybNiwnHTSSXnjjTdSVlaWfffdN82bN0+1atXy1ltv5cQTT8xrr72WJk2a5KijjsqIESOSJKtXr86AAQPyyiuvpLS0NN27d8/o0aOTJF26dMlPf/rTyrENGzbMzjvvnAceeCBbb711kn+/T/uuu+7KyJEjc/XVV6d69erZZpttcsopp6zzPahRo0aGDh2aBQsWpHbt2tlnn31y2223rfX+HHXUURkyZMg61R47dmzGjh2bGjVqpHHjxtlll11y++23p2fPnlm8eHGS5Igjjsg555yTM844Ix9++GEOO+ywXHzxxRk+fHhlnd69e2fixInZf//9s2TJkowbNy59+/bNqFGjcvXVV2fo0KHZd99988Mf/jAnnnjiZ+YaMmRIli9fntNOOy1LlizJ3nvvnfvuuy+1atVa5/sGAMD6KVRUVFRUdQgA+Kq57bbbcuKJJ6Zbt2554IEHcvDBB+ell17Ka6+9liOPPDLjxo2r6ojAV8DSpUtTv379vPvuuyktLa3qOAAAAAAAAAAAAAAAAAAAAAAAAAAAX2uFQiGTJk1Kr169qmQ8AAAAAAAAAAAAAAAAAAAAAAAAAAB83ZWXl2fx4sVJkrKyshQVFVVJjXUxfvz4DBw4MEuWLNmg41esWJErr7wySXLhhRemRo0aXzBp1fq6rQcAqBpLly5N/fr18+6776a0tHSt/Yq/xEwAsE5eeeWVTJ48OQsXLsyKFSvWaBs1atSXkuHKK6/M6NGjM2DAgNSrVy/XXXdd2rZtm//5n/9JixYtvpQMAAAAAAAAAAAAAAAAAAAAAAAAAAAArOm4445L48aN88orr6zzmH79+mXChAkbMRUAAAAAAAAAAAAAAAAAAAAAAAAAAFAV3n333ZSUlGTAgAG5+uqr13lcSUlJVq1alVq1am3EdAAA3zzFVR0AAD5qypQpOeKII7LFFlvkxRdfzPbbb58FCxakoqIinTp1+tJyzJs3L4cddliSpEaNGlm+fHkKhULOOeecHHDAARkxYsSXlgUAAAAAAAAAAAAAAAAAAAAAAAAAAIBk7ty5SZJq1ap9rnEjR47MoEGDkiQtWrTY4LkAAAAAAAAAAAAAAAAAAAAAAAAAAODrpLi4+CtR47P07t07e++9d5KkQYMGn2vszJkzk3z+vU4BAPh0G/9/gQDwOQwdOjSDBg3KiBEjUq9evfzhD39Is2bNcvzxx6d79+5fWo6GDRvmX//6V5Jks802y3PPPZeOHTtmyZIlee+99760HAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxbu3bt1mtcs2bN0qxZsw2cBgAAAAAAAAAAAAAAAAAAAAAAAAAAvn4KhUJq1KhReVxVNdZFvXr1Uq9evfUau757nQIA8OmKqjoAAHzU7Nmzc+KJJyZJiouL8/7776ekpCQjR47M1Vdf/aXl2HffffPggw8mSY455picffbZOfXUU3PcccflwAMP/NJyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfBlWrlyZCRMmZMKECVm5cmWV1QAAYNNUXNUBAOCj6tatmxUrViRJWrRokXnz5mW77bZLkrz55ptfWo4bbrghH3zwQZJk2LBhqV69ev785z+nd+/eueiii760HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF+WN9988ytRAwCATU9xVQcAgI/aY4898vjjj6dDhw459NBDc9555+XZZ5/NxIkTs8cee2z0+ZcuXZokKS4uTklJSeX56aefntNPP32jzw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJua4qoOAAAfNWrUqCxbtixJMmLEiCxbtiy333572rdvn1GjRm30+Rs0aJBCofCZ/VavXr3RswAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKaguKoDAMB/rF69Oq+88kp22GGHJEndunVz4403fqkZHnnkkcrjioqKHHroobn55puz2Wabfak5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgU1Fc1QEA4D+qVauWgw8+OLNnz06DBg2qJEOXLl0+lmmPPfbIFltsUSV5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgq66oqgMAwEdtv/32+cc//lHVMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgHVUVNUBAOCjLr/88gwaNCh33XVXFi1alKVLl67xAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYONo0qRJmjRpUuU1AADY9BRXdQAASJKRI0fmvPPOy6GHHpokOeKII1IoFCrbKyoqUigUsnr16i8920dzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfB1Vr1493//+9yuPq6oGAACbpuKqDgAASTJixIj069cvjzzySJXmOOqoo9Y4/+CDD9KvX7/UrVt3jesTJ078MmMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsVIVCIQ0aNPhCNSoqKrJixYrK40KhsAGSAQCwKSiu6gAAkPz7C4kk6dKlS5XmqF+//hrn3//+96soCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIZRKBQyadKk9OrVa619+vbtmyVLluTOO+/8QnOtWrXqC43/JC+++GL69u2bmTNnZptttsnMmTM3+BwAAHwxxVUdAAD+o1AoVHWEjBs3rqojAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAm6hCofCp7ZdeemmGDx/+5YT5iEWLFqVhw4ZJkgULFqRt27aZMWNGdtppp8o+1113XSoqKjbovKtXr86PfvSjjB8/Pi+//HJq166d9u3b59RTT80pp5yyznUuvfTS1K1bN3PmzElJSckGzQgAwIZRXNUBAOA/ttpqq8/8kubtt9/+ktIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8PosWLao8vv3223PJJZdkzpw5lddKSkoqjysqKrJ69eoUFxdv9FxlZWWf2ad+/fobfN4RI0bkF7/4RW644YbsuuuuWbp0aaZPn5533nnnc9WZN29eDjvssLRu3XqDZwQAYMMoquoAAPAfI0aMyOjRoz/1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8FVVVlZW+alfv34KhULl+Ysvvph69erl3nvvzS677JKaNWvm8ccfz7x589KzZ880b948JSUl2W233fLQQw+tUbdNmza58sorc/LJJ6devXpp1apVbrrppsr2FStW5IwzzkiLFi1Sq1attG7dOj/84Q8r2wuFQu68884kSdu2bZMkO++8cwqFQvbbb78kSd++fdOrV6/KMR9++GHOOuusNGvWLLVq1cree++dp556qrJ96tSpKRQKmTJlSnbdddfUqVMne++9d/7+979X9pk8eXJOP/30HHPMMWnbtm123HHH/OAHP8igQYMq+9x3333Ze++906BBgzRu3DiHH3545s2bt0b2p59+OiNHjkyhUMjw4cOTJP/85z/zne98Jw0aNEijRo3Ss2fPLFiwYL3+bgAAfHFFVR0AAP7ju9/9bvr06fOpHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgE3ZBRdckKuuuiqzZ8/ODjvskGXLluXQQw/NlClTMmPGjHTv3j09evTIwoUL1xh37bXXZtddd82MGTNy+umnp3///pkzZ06SZMyYMZk8eXLuuOOOzJkzJ7feemvatGnzifM/+eSTSZKHHnooixYtysSJEz+x35AhQ/KHP/wht9xyS5555pm0a9cu3bp1y9tvv71Gv2HDhuXaa6/N9OnTU1xcnPPOO6+yraysLA8//HDeeOONtd6P5cuX59xzz8306dMzZcqUFBUV5cgjj0x5eXmSZNGiRdluu+1y3nnnZdGiRRk0aFBWrlyZbt26pV69ennssccybdq0lJSUpHv37lmxYsWn/wEAANgoiqs6AAAkSaFQqOoIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG93IkSNz0EEHVZ43atQoO+64Y+X5ZZddlkmTJmXy5Mk544wzKq8feuihOf3005Mk559/fkaPHp1HHnkkW2+9dRYuXJj27dtn7733TqFQSOvWrdc6f9OmTZMkjRs3TllZ2Sf2Wb58eX7+859n/PjxOeSQQ5IkY8eOzYMPPphf/vKXGTx4cGXfK664Il26dEmSDBkyJD169MgHH3yQJBk1alSOPvrolJWVZbvttkvnzp3Ts2fPyppJ0rt37zXm/tWvfpWmTZvmhRdeyPbbb5+ysrIUFxenpKSkMu+ECRNSXl6em2++OYVCIUkybty4NGjQIFOnTs3BBx+81vUDALBxFFV1AABIkoqKiqqOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsNHtuuuua5wvW7YsgwYNSocOHdKgQYOUlJRk9uzZWbhw4Rr9dthhh8rjQqGQsrKyvP7660mSvn37ZubMmdl6661z1lln5YEHHvhCGefNm5eVK1dmr732qrxWvXr1fPvb387s2bPXmqtFixZJkrfeeitJsu222+a5557LX/7yl5x88sl5/fXX06NHj5xyyimVY+bOnZvjjjsuW2yxRUpLS9OmTZsk+dj6P2rWrFn5+9//nnr16qWkpCQlJSVp1KhRPvjgg8ybN+8LrR0AgPVTXNUBACBJysvLqzoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADARle3bt01zgcNGpQHH3wwP/7xj9OuXbvUrl07Rx99dFasWLFGv+rVq69xXigUUl5eniTp1KlT5s+fn3vvvTcPPfRQvvOd76Rr1675/e9/v3EX81+5CoVCklTmSpKioqLstttu2W233TJw4MBMmDAhJ5xwQoYNG5a2bdumR48ead26dcaOHZtvfetbKS8vz/bbb/+x9X/UsmXLsssuu+TWW2/9WFvTpk034OoAAFhXxVUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+qaZNm5a+ffvmyCOPTJIsW7YsCxYs+Nx1SktLc+yxx+bYY4/N0Ucfne7du+ftt99Oo0aN1uhXo0aNJMnq1avXWmvLLbdMjRo1Mm3atLRu3TpJsnLlyjz11FMZOHDg5872Udtuu22SZPny5XnrrbcyZ86cjB07Nvvss0+S5PHHH//MGp06dcrtt9+eZs2apbS09AvlAQBgwyiu6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8E3Vvn37TJw4MT169EihUMjFF1+c8vLyz1Vj1KhRadGiRXbeeecUFRXld7/7XcrKytKgQYOP9W3WrFlq166d++67Ly1btkytWrVSv379NfrUrVs3/fv3z+DBg9OoUaO0atUq11xzTd5777384Ac/WOdcRx99dPbaa6907tw5ZWVlmT9/foYOHZqtttoq22yzTYqKitK4cePcdNNNadGiRRYuXJgLLrjgM+sef/zx+dGPfpSePXtm5MiRadmyZV5++eVMnDgxQ4YMScuWLdc5IwAAG0ZRVQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG+qUaNGpWHDhuncuXN69OiRbt26pVOnTp+rRr169XLNNddk1113zW677ZYFCxbknnvuSVFR0cf6FhcXZ8yYMfnFL36Rb33rW+nZs+cn1rzqqqvSu3fvnHDCCenUqVP+/ve/5/7770/Dhg3XOVe3bt3yf//3f+nRo0e22mqr9OnTJ9tss00eeOCBFBcXp6ioKLfddluefvrpbL/99jnnnHPyox/96DPr1qlTJ48++mhatWqVo446Kh06dMgPfvCDfPDBByktLV3nfAAAbDiFioqKiqoOAQAAm6KlS5emfv36effdd33BCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB845WXl2fx4sVJkrKyshQVFVVxos9nxYoVufLKK5MkF154YWrUqFHFib6Yr9t6AICqsXTp0tSvXz/vvvtuSktL19pv0/qfHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfKcVVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+HooLi6u6ggAAFQB/wsEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL6wQqGQGjVqVB4DAPDNUVTVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATd/KlSszYcKETJgwIStXrqzqOAAAfImKqzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD18Oabb1Z1BAAAqkBRVQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNNVVNUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANh0FVV1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2XUVVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATVdRVQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYNNVXNUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICvhyZNmlR1hC9kU88PAFBViqs6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw6atevXq+//3vVx5vajb1/AAAVam4qgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJu+QqGQBg0aVHWM9VZRUZEVK1ZUHhcKhSpOBACw6Siq6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8E00fvz4NGjQYIPVmzp1agqFQpYsWbLBan7d/eeeFQqFHHnkkVm1alVWrVq1TmPbtGlTOdY9BwC+6YqqOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfF317ds3hUIhhUIhNWrUSLt27TJy5MisWrVqg8/VuXPnLFq0KPXr19+gdd944430798/rVq1Ss2aNVNWVpZu3bpl2rRpG3SeqjRnzpyMGzdujWs//elP06ZNm9SqVSu77757nnzyyTXan3rqqfzhD3/4MmMCAHxlFVd1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4OuvevXvGjRuXDz/8MPfcc08GDBiQ6tWrp0WLFht0nho1aqSsrGyD1kyS3r17Z8WKFbnllluyxRZb5LXXXsuUKVPy1ltvbfC5qkqzZs1SWlqaxYsXJ0luv/32nHvuubnxxhuz++675yc/+Um6deuWOXPmpFmzZkmSpk2bplGjRlUZGwDgK6OoqgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNdZzZo1U1ZWltatW6d///7p2rVrJk+e/LF+8+bNS8+ePdO8efOUlJRkt912y0MPPbRGnw8//DDnn39+Nt9889SsWTPt2rXLL3/5yyTJ1KlTUygUsmTJkiTJ+PHj06BBg9x///3p0KFDSkpK0r179yxatKiy3qpVq3LWWWelQYMGady4cc4///z06dMnvXr1SpIsWbIkjz32WK6++ursv//+ad26db797W9n6NChOeKII5IkCxYsSKFQyMyZMyvrLlmyJIVCIVOnTq289vzzz+fwww9PaWlp6tWrl3322Sfz5s2rbP/Vr36V7bbbLjVr1kyLFi1yxhlnrFHvlFNOSdOmTVNaWpoDDjggs2bNqmyfNWtW9t9//9SrVy+lpaXZZZddMn369CTJyy+/nB49eqRhw4apW7dutttuu9xzzz2f+jf7yU9+klNPPTUnnXRStt1229x4442pU6dOfvWrX33qOACAb6qiqg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8ktWvXzooVKz52fdmyZTn00EMzZcqUzJgxI927d0+PHj2ycOHCyj4nnnhi/vd//zdjxozJ7Nmz84tf/CIlJSVrneu9997Lj3/84/zmN7/Jo48+moULF2bQoEGV7VdffXVuvfXWjBs3LtOmTcvSpUtz5513VraXlJSkpKQkd955Zz788MP1XvP/+3//L/vuu29q1qyZhx9+OE8//XROPvnkrFq1Kkny85//PAMGDMhpp52WZ599NpMnT067du0qxx9zzDF5/fXXc++99+bpp59Op06dcuCBB+btt99Okhx//PFp2bJlnnrqqTz99NO54IILUr169STJgAED8uGHH+bRRx/Ns88+m6uvvvpT79mKFSvy9NNPp2vXrpXXioqK0rVr1zzxxBPrfQ8AAL7Oiqs6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8E1RUVGTKlCm5//77c+aZZ36sfccdd8yOO+5YeX7ZZZdl0qRJmTx5cs4444y89NJLueOOO/Lggw+ma9euSZItttjiU+dcuXJlbrzxxmy55ZZJkjPOOCMjR46sbL/++uszdOjQHHnkkUmSG264Iffcc09le3FxccaPH59TTz01N954Yzp16pQuXbrku9/9bnbYYYd1XvtPf/rT1K9fP7fddluqV6+eJNlqq60q2y+//PKcd955Ofvssyuv7bbbbkmSxx9/PE8++WRef/311KxZM0ny4x//OHfeeWd+//vf57TTTsvChQszePDgbLPNNkmS9u3bV9ZZuHBhevfunY4dO67TPXv77bezevXqNG/efI3rzZs3z4svvrjOawYA+CYpquoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB1dtddd6WkpCS1atXKIYcckmOPPTbDhw//WL9ly5Zl0KBB6dChQxo0aJCSkpLMnj07CxcuTJLMnDkz1apVS5cuXdZ57jp16mTLLbesPG/RokVef/31JMm7776b1157Ld/+9rcr26tVq5ZddtlljRq9e/fOq6++msmTJ6d79+6ZOnVqOnXqlPHjx69zjpkzZ2afffZJ9erVP9b2+uuv59VXX82BBx74iWNnzZqVZcuWpXHjxikpKan8zJ8/P/PmzUuSnHvuuTnllFPStWvXXHXVVZXXk+Sss87K5Zdfnr322iuXXnpp/va3v61zbgAA1k1RVQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK+z/fffPzNnzszcuXPz/vvv55ZbbkndunU/1m/QoEGZNGlSrrzyyjz22GOZOXNmOnbsmBUrViRJateu/bnnrl69+hrnhUIhFRUVn7tOrVq1ctBBB+Xiiy/On//85/Tt2zeXXnppkqSoqChJ1qi7cuXKNcZ/WvbPWteyZcvSokWLzJw5c43PnDlzMnjw4CTJ8OHD8/zzz+ewww7Lww8/nG233TaTJk1Kkpxyyin5xz/+kRNOOCHPPvtsdt1111x//fVrna9Ro0apVq1aXnvttTWuv/baaykrK/vUrAAA31RFVR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL7O6tatm3bt2qVVq1YpLi5ea79p06alb9++OfLII9OxY8eUlZVlwYIFle0dO3ZMeXl5/vSnP22QXPXr10/z5s3z1FNPVV5bvXp1nnnmmc8cu+2222b58uVJkqZNmyZJFi1aVNk+c+bMNfrvsMMOeeyxx7Jy5cqP1apXr17atGmTKVOmfOJcnTp1yuLFi1NcXJx27dqt8WnSpEllv6222irnnHNOHnjggRx11FEZN25cZdvmm2+efv36ZeLEiTnvvPMyduzYta6tRo0a2WWXXdbIU15enilTpmTPPff8lLsCAPDNVVTVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApH379pk4cWJmzpyZWbNm5Xvf+17Ky8sr29u0aZM+ffrk5JNPzp133pn58+dn6tSpueOOO9Z7zjPPPDM//OEP88c//jFz5szJ2WefnXfeeSeFQiFJ8tZbb+WAAw7IhAkT8re//S3z58/P7373u1xzzTXp2bNnkqR27drZY489ctVVV2X27Nn505/+lIsuumiNec4444wsXbo03/3udzN9+vTMnTs3v/nNbzJnzpwkyfDhw3PttddmzJgxmTt3bp555plcf/31SZKuXbtmzz33TK9evfLAAw9kwYIF+fOf/5xhw4Zl+vTpef/993PGGWdk6tSpefnllzNt2rQ89dRT6dChQ5Jk4MCBuf/++zN//vw888wzeeSRRyrb1mbgwIEZO3ZsbrnllsyePTv9+/fP8uXLc9JJJ633vQYA+DorruoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAyatSonHzyyencuXOaNGmS888/P0uXLl2jz89//vNceOGFOf300/PWW2+lVatWufDCC9d7zvPPPz+LFy/OiSeemGrVquW0005Lt27dUq1atSRJSUlJdt9994wePTrz5s3LypUrs/nmm+fUU09dY95f/epX+cEPfpBddtklW2+9da655pocfPDBle2NGzfOww8/nMGDB6dLly6pVq1adtppp+y1115Jkj59+uSDDz7I6NGjM2jQoDRp0iRHH310kqRQKOSee+7JsGHDctJJJ+WNN95IWVlZ9t133zRv3jzVqlXLW2+9lRNPPDGvvfZamjRpkqOOOiojRoxIkqxevToDBgzIK6+8ktLS0nTv3j2jR4/+1Pty7LHH5q233soll1ySxYsXZ6eddsp9992X5s2br/e9BgD4OitUVFRUVHUIAADYFC1dujT169fPu+++m9LS0qqOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwhZWXl6dDhw75zne+k8suu6yq42x0U6dOzf7775933nknpaWlWbx4cZKkrKwsRUVFn2t8gwYNNnLaz2fFihW58sorkyQXXnhhatSoUcWJAIBN0dKlS1O/fv28++67KS0tXWu/z/6fEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwtfTyyy9n7Nixeemll/Lss8+mf//+mT9/fr73ve9VdbQvVcuWLT/3mrfbbrsccsghGykRAMCmpbiqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVaOoqCjjx4/PoEGDUlFRke233z4PPfRQOnToUNXRvhS777575s6dmySpU6dOiouL13nsPffck5UrVyZJSktLN0o+AIBNxbr/LwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+FrZfPPNM23atKqOUWVq166ddu3aJUkqKiry7rvvJkkKhcJnjm3duvVGzQYAsCkpquoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVbeXKlZkwYUImTJiQlStXVnUcAIBNSnFVBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+Cp48803qzoCAMAmqaiqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw6Sqq6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbLqKqjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJuuoqoOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCmq6iqAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw6Squ6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8FTZo0qeoIAACbpOKqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUNWqV6+e73//+5XHAACsu+KqDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUNUKhUIaNGhQ1TEAADZJRVUdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgq2Dq1KkpFApZsmRJkmT8+PEpFAopFAoZOHDg56r1n3ENGjTY4DkBAL5qiqo6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA59W3b98UCoWPfbp3775B5yktLc2iRYty2WWXVV6rqKjIJZdckhYtWqR27drp2rVr5s6du8a4RYsW5f9r716jrKrv+49/znGQEYYZRHQGVAwKglYGxQuSaMArSDWgJEaCRqyXag0Nsd6LKEq8JhVdRmxzw6yIpqmVqFWspQ5Bg3dHpMEb0apVUDFcU8DC/B9kZf6ZeIGguGf09Vprr3XOb+999vscnn3Xbw1Tpkz5WFsAAFqrctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbYtiwYXnjjTdaHLfeeuvH+oxSqZS6urp06tSpee3qq6/O9ddfn5tuuimPPPJIOnbsmKFDh2b16tXN19TV1aWmpuZjbQEAaK3KRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGyK9u3bp66ursWx9dZbJ0lKpVJ+8IMf5Oijj06HDh3Su3fv3HnnnS3uv+eee7Lrrrtmq622ykEHHZSXX355g89samrKlClTMmHChIwYMSL19fX5yU9+ktdffz0zZszYDN8SAKD1KxcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwOUyaNCnHHnts5s2bl+HDh2fMmDF55513kiSvvvpqjjnmmBx11FFpbGzMKaeckvPPP3+Dn/nSSy9l0aJFOfTQQ5vXampqMnDgwMydO3ezfRcAgNasXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCmuPvuu1NVVdXiuPzyy5vPjx07NqNHj06vXr1y+eWXZ+XKlXn00UeTJFOnTs0uu+yS7373u+nTp0/GjBmTsWPHbvCZixYtSpLU1ta2WK+trW0+BwDwWVNRdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKY46KCDMnXq1BZrXbp0aX5dX1/f/Lpjx46prq7Om2++mSRZsGBBBg4c2OLeQYMGbcZaAIBPr4qiAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANkXHjh3Tq1evDzzfrl27Fu9LpVLWr1//kZ5ZV1eXJFm8eHG6devWvL548eLsueeeH+mzAQDaqnLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn7Tddtstjz76aIu1hx9+eIP39ezZM3V1dZk1a1bz2vLly/PII49k0KBBH3snAEBbUC46AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgU6xZsyaLFi1qcbz99tsbde/pp5+eF154Ieecc06ee+65TJ8+PdOmTdvgfaVSKePHj8/kyZNz55135plnnsnXv/71dO/ePSNHjvxoXwgAoI0qFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALApZs6cmW7durU4DjjggI26t0ePHrn99tszY8aM9O/fPzfddFMuv/zyjbr33HPPzbhx43Laaadl3333zcqVKzNz5sxUVlZ+lK8DANBmVRQdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw55o2bVqmTZv2geebmpres7Z06dIW74888sgceeSRLdZOOumkDT67VCrl0ksvzaWXXrpRrQAAn3blogMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqrZcuWpaqqKuedd96fdV9VVVVOP/30zVQFANC6VBQdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQGo0aNSoHHHBAkqRz585/1r2NjY1Jki222OJjrgIAaH0qig4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiNOnXqlE6dOm3Svb169fqYawAAWq9y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtF3logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLvKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HaViw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoO0qFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNtVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLarXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG1XRdEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8/Lp27Vp0AgDwGVFRdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+vdu3a5fjjj29+DQCwOVUUHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwMerVCqlc+fORWcAAJ8R5aIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADamlKplBkzZhSdsVm9/PLLKZVKaWxsTJI0NDSkVCpl6dKln9gzAYC2oVx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAa/PWW2/ljDPOSI8ePdK+ffvU1dVl6NCheeihhwrpaWhoSKlUes8xYcKEQnoAAP5YRdEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtzahRo7J27drcfPPN2XnnnbN48eLMmjUrS5YsKbTrueeeS3V1dfP7qqqqAmsAAH6vXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBrsnTp0syZMydXXXVVDjrooOy0007Zb7/9csEFF+RLX/pS83Vvv/12jj766HTo0CG9e/fOnXfe2eJzZs+enf322y/t27dPt27dcv755+f//u//kiR33313OnfunHXr1iVJGhsbUyqVcv755zfff8opp+T4449v8Znbbbdd6urqmo+qqqokyauvvppjjz02nTt3TpcuXTJixIi8/PLLLe79wQ9+kN122y2VlZXp27dvbrzxxhbnH3300ey1116prKzMPvvsk6eeeup9f5+HHnoo9fX1qayszP7775/58+c3n1uyZElGjx6d7bffPh06dEi/fv1y6623trh//fr1ufrqq9OrV6+0b98+PXr0yLe//e33fda6devyV3/1V+nbt29eeeWV970GACheuegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWpKqqKlVVVZkxY0bWrFnzgddNmjQpxx57bObNm5fhw4dnzJgxeeedd5Ik//M//5Phw4dn3333zdNPP52pU6fmhz/8YSZPnpwkOfDAA7NixYo89dRTSZLZs2ena9euaWhoaP782bNnZ8iQIRvsfffddzN06NB06tQpc+bMyUMPPZSqqqoMGzYsa9euTZLccsstmThxYr797W9nwYIFufzyy3PRRRfl5ptvTpKsXLkyRx55ZHbfffc88cQTueSSS3L22We/7/POOeecfPe7381jjz2WbbfdNkcddVTefffdJMnq1auz995759/+7d8yf/78nHbaaTnhhBPy6KOPNt9/wQUX5Morr8xFF12UX//615k+fXpqa2vf85w1a9bkK1/5ShobGzNnzpz06NFjg78FAFCMUlNTU1PREQAA0BYtX748NTU1WbZsWaqrq4vOAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgY3T77bfn1FNPzf/+7/9mwIABGTx4cI477rjU19cnSUqlUiZMmJDLLrssSbJq1apUVVXl3nvvzbBhw/L3f//3uf3227NgwYKUSqUkyY033pjzzjsvy5YtS7lczt57753Ro0fn7LPPztFHH5199903kyZNypIlS7Js2bLssMMOef7559O7d+80NDTkoIMOSseOHVt0/vd//3fuvffeTJ48ucWz1q5dm86dO2fGjBk5/PDD06tXr1x22WUZPXp0872TJ0/OPffck1/96lf5p3/6p1x44YV57bXXUllZmSS56aabcsYZZ+Spp57Knnvu2dxw22235atf/WqS5J133skOO+yQadOm5dhjj33f3/LII49M3759853vfCcrVqzItttumxtuuCGnnHLKe659+eWX07Nnz8yZMyeXXHJJ1qxZk7vvvjs1NTUf5Z8TANhEy5cvT01NTZYtW5bq6uoPvK78CTYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQJo0aNyuuvv54777wzw4YNS0NDQwYMGJBp06Y1X1NfX9/8umPHjqmurs6bb76ZJFmwYEEGDRqUUqnUfM0XvvCFrFy5Mq+99lqSZPDgwWloaEhTU1PmzJmTY445JrvttlsefPDBzJ49O927d0/v3r1bdM2ZMyeNjY3Nx9Zbb52nn346L774Yjp16pSqqqpUVVWlS5cuWb16dRYuXJhVq1Zl4cKFOfnkk5vPV1VVZfLkyVm4cGFzb319fSorK5ufNWjQoPf9bf54vUuXLunTp08WLFiQJFm3bl0uu+yy9OvXL126dElVVVXuu+++vPLKK83PWbNmTQ455JAP/f1Hjx6dVatW5d///d9TU1PzodcCAMWrKDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA1qqyszGGHHZbDDjssF110UU455ZRcfPHFGTt2bJKkXbt2La4vlUpZv379Rn/+kCFD8qMf/ShPP/102rVrl759+2bIkCFpaGjIb3/72wwePPg99/Ts2TOdO3dusbZy5crsvffeueWWW95z/bbbbpuVK1cmSb7//e9n4MCBLc5vscUWG927Ma655ppcd911mTJlSvr165eOHTtm/PjxWbt2bZJkq6222qjPGT58eH76059m7ty5Ofjggz/WRgDg41cuOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoC3Yfffds2rVqo26drfddsvcuXPT1NTUvPbQQw+lU6dO2WGHHZIkBx54YFasWJFrr702gwcPTpIMGTIkDQ0NaWhoyJAhQzbqWQMGDMgLL7yQ7bbbLr169Wpx1NTUpLa2Nt27d89vfvOb95zv2bNnc++8efOyevXq5s99+OGH3/d5f7z+29/+Ns8//3x222235u84YsSIHH/88enfv3923nnnPP/8883X9+7dO1tttVVmzZr1od/pjDPOyJVXXpkvfelLmT179kb9DgBAccpFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtCZLlizJwQcfnJ/+9KeZN29eXnrppfz85z/P1VdfnREjRmzUZ/zN3/xNXn311YwbNy7PPvtsfvGLX+Tiiy/OWWedlXK5nCTZeuutU19fn1tuuSVDhgxJknzxi1/Mk08+meeffz6DBw/eqGeNGTMmXbt2zYgRIzJnzpy89NJLaWhoyN/+7d/mtddeS5JMmjQpV1xxRa6//vo8//zzeeaZZ/LjH/84//AP/5Ak+drXvpZSqZRTTz01v/71r3PPPffkO9/5zvs+79JLL82sWbMyf/78jB07Nl27ds3IkSOTJL17987999+fX/3qV1mwYEH++q//OosXL26+t7KyMuedd17OPffc/OQnP8nChQvz8MMP54c//OF7njNu3LhMnjw5Rx55ZB588MGN+i0AgGJUFB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCaVFVVZeDAgbn22muzcOHCvPvuu9lxxx1z6qmn5sILL9yoz9h+++1zzz335Jxzzkn//v3TpUuXnHzyyZkwYUKL6wYPHpzGxsYMGTIkSdKlS5fsvvvuWbx4cfr06bNRz+rQoUN++ctf5rzzzssxxxyTFStWZPvtt88hhxyS6urqJMkpp5ySDh065Jprrsk555yTjh07pl+/fhk/fnzzd77rrrty+umnZ6+99sruu++eq666KqNGjXrP86688sp885vfzAsvvJA999wzd911V7bccsskyYQJE/Kb3/wmQ4cOTYcOHXLaaadl5MiRWbZsWfP9F110USoqKjJx4sS8/vrr6datW04//fT3/W7jx4/P+vXrM3z48MycOTOf//znN+o3AQA+WaWmpqamoiMAAKAtWr58eWpqarJs2bLmYR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfFosX748NTU1WbZsWaqrqz/wuvIn2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAp0y56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2q5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtF3logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLvKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HaViw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoO0qFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNtVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLarougAAABoq5qampIky5cvL7gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5+y5cvT5I0NTV96HUVn0QMAAB8Gq1YsSJJsuOOOxZcAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACbz4oVK1JTU/OB50tNTU1Nn2APAAB8aqxfvz6vv/56OnXqlFKpVHQOH2L58uXZcccd8+qrr6a6urroHAAAAACANsN8FQAAAABg05ivAgAAAABsGvNVAAAAAIBNY74KAAAAALBpzFcBAAAAADaN+SoAAAAAwKYxXwUAAAAA2DTmq9A6NDU1ZcWKFenevXvK5fIHXlfxCTYBAMCnSrlczg477FB0Bn+G6upqwwoAAAAAgE1gvgoAAAAAsGnMVwEAAAAANo35KgAAAADApjFfBQAAAADYNOarAAAAAACbxnwVAAAAAGDTmK8CAAAAAGwa81UoXk1NzQavKX8CHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8SpWLDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg7SoXHQAAALC5tW/fPhdffHHat29fdAoAAAAAQJtivgoAAAAAsGnMVwEAAAAANo35KgAAAADApjFfBQAAAADYNOarAAAAAACbxnwVAAAAAGDTmK8CAAAAAGwa81VoW0pNTU1NRUcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DaViw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoO0qFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNtVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLarXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG1XuegAAACAzel73/tePve5z6WysjIDBw7Mo48+WnQSAAAAAECrdskll6RUKrU4+vbtW3QWAAAAAECr9Mtf/jJHHXVUunfvnlKplBkzZrQ439TUlIkTJ6Zbt27Zaqutcuihh+aFF14oJhYAAAAAoBXZ0Hx17Nix79nTOmzYsGJiAQAAAABaiSuuuCL77rtvOnXqlO222y4jR47Mc8891+Ka1atX58wzz8w222yTqqqqjBo1KosXLy6oGAAAAACgddiY+eqQIUPes3/19NNPL6gYAAAAAKB1mDp1aurr61NdXZ3q6uoMGjQo9957b/N5e1cBAAAAAN7fhuar9q4CAAAAAGycK6+8MqVSKePHj29es4cV2oZy0QEAAACby89+9rOcddZZufjii/Pkk0+mf//+GTp0aN58882i0wAAAAAAWrW/+Iu/yBtvvNF8PPjgg0UnAQAAAAC0SqtWrUr//v3zve99733PX3311bn++utz00035ZFHHknHjh0zdOjQrF69+hMuBQAAAABoXTY0X02SYcOGtdjTeuutt36ChQAAAAAArc/s2bNz5pln5uGHH87999+fd999N4cffnhWrVrVfM23vvWt3HXXXfn5z3+e2bNn5/XXX88xxxxTYDUAAAAAQPE2Zr6aJKeeemqL/atXX311QcUAAAAAAK3DDjvskCuvvDJPPPFEHn/88Rx88MEZMWJE/uu//iuJvasAAAAAAB9kQ/PVxN5VAAAAAIANeeyxx/KP//iPqa+vb7FuDyu0DaWmpqamoiMAAAA2h4EDB2bffffNDTfckCRZv359dtxxx4wbNy7nn39+wXUAAAAAAK3TJZdckhkzZqSxsbHoFAAAAACANqVUKuWOO+7IyJEjkyRNTU3p3r17/u7v/i5nn312kmTZsmWpra3NtGnTctxxxxVYCwAAAADQevzpfDVJxo4dm6VLl2bGjBmFdQEAAAAAtHZvvfVWtttuu8yePTtf/OIXs2zZsmy77baZPn16vvzlLydJnn322ey2226ZO3du9t9//4KLAQAAAABahz+drybJkCFDsueee2bKlCnFxgEAAAAAtHJdunTJNddcky9/+cv2rgIAAAAA/Bn+MF89+eST7V0FAAAAANiAlStXZsCAAbnxxhszefLk5pmqv78KbUe56AAAAIDNYe3atXniiSdy6KGHNq+Vy+UceuihmTt3boFlAAAAAACt3wsvvJDu3btn5513zpgxY/LKK68UnQQAAAAA0Oa89NJLWbRoUYv9rDU1NRk4cKD9rAAAAAAAG6GhoSHbbbdd+vTpkzPOOCNLliwpOgkAAAAAoFVZtmxZkt//h9xJ8sQTT+Tdd99tsX+1b9++6dGjh/2rAAAAAAB/5E/nq39wyy23pGvXrtljjz1ywQUX5He/+10ReQAAAAAArdK6dety2223ZdWqVRk0aJC9qwAAAAAAG+lP56t/YO8qAAAAAMAHO/PMM/OXf/mXLfaqJv7+KrQlFUUHAAAAbA5vv/121q1bl9ra2hbrtbW1efbZZwuqAgAAAABo/QYOHJhp06alT58+eeONNzJp0qQceOCBmT9/fjp16lR0HgAAAABAm7Fo0aIked/9rH84BwAAAADA+xs2bFiOOeaY9OzZMwsXLsyFF16YI444InPnzs0WW2xRdB4AAAAAQOHWr1+f8ePH5wtf+EL22GOPJL/fv7rlllumc+fOLa61fxUAAAAA4P97v/lqknzta1/LTjvtlO7du2fevHk577zz8txzz+Vf//VfC6wFAAAAACjeM888k0GDBmX16tWpqqrKHXfckd133z2NjY32rgIAAAAAfIgPmq8m9q4CAAAAAHyY2267LU8++WQee+yx95zz91eh7agoOgAAAAAAAAAAgNbjiCOOaH5dX1+fgQMHZqeddso///M/5+STTy6wDAAAAAAAAAAAAIDPiuOOO675db9+/VJfX59ddtklDQ0NOeSQQwosAwAAAABoHc4888zMnz8/Dz74YNEpAAAAAABtygfNV0877bTm1/369Uu3bt1yyCGHZOHChdlll10+6UwAAAAAgFajT58+aWxszLJly/Iv//IvOfHEEzN79uyiswAAAAAAWr0Pmq/uvvvu9q4CAAAAAHyAV199Nd/85jdz//33p7Kysugc4CMoFx0AAACwOXTt2jVbbLFFFi9e3GJ98eLFqaurK6gKAAAAAKDt6dy5c3bddde8+OKLRacAAAAAALQpf9izaj8rAAAAAMBHt/POO6dr1672tAIAAAAAJPnGN76Ru+++Ow888EB22GGH5vW6urqsXbs2S5cubXG9/asAAAAAAL/3QfPV9zNw4MAksX8VAAAAAPjM23LLLdOrV6/svffeueKKK9K/f/9cd9119q4CAAAAAGzAB81X34+9qwAAAAAAv/fEE0/kzTffzIABA1JRUZGKiorMnj07119/fSoqKlJbW2sPK7QR5aIDAAAANoctt9wye++9d2bNmtW8tn79+syaNSuDBg0qsAwAAAAAoG1ZuXJlFi5cmG7duhWdAgAAAADQpvTs2TN1dXUt9rMuX748jzzyiP2sAAAAAAB/ptdeey1LliyxpxUAAAAA+ExramrKN77xjdxxxx35z//8z/Ts2bPF+b333jvt2rVrsX/1ueeeyyuvvGL/KgAAAADwmbah+er7aWxsTBL7VwEAAAAA/sT69euzZs0ae1cBAAAAAP5Mf5ivvh97VwEAAAAAfu+QQw7JM888k8bGxuZjn332yZgxY5pf28MKbUNF0QEAAACby1lnnZUTTzwx++yzT/bbb79MmTIlq1atykknnVR0GgAAAABAq3X22WfnqKOOyk477ZTXX389F198cbbYYouMHj266DQAAAAAgFZn5cqVefHFF5vfv/TSS2lsbEyXLl3So0ePjB8/PpMnT07v3r3Ts2fPXHTRRenevXtGjhxZXDQAAAAAQCvwYfPVLl26ZNKkSRk1alTq6uqycOHCnHvuuenVq1eGDh1aYDUAAAAAQLHOPPPMTJ8+Pb/4xS/SqVOnLFq0KElSU1OTrbbaKjU1NTn55JNz1llnpUuXLqmurs64ceMyaNCg7L///gXXAwAAAAAUZ0Pz1YULF2b69OkZPnx4ttlmm8ybNy/f+ta38sUvfjH19fUF1wMAAAAAFOeCCy7IEUcckR49emTFihWZPn16Ghoact9999m7CgAAAADwIT5svmrvKgAAAADAB+vUqVP22GOPFmsdO3bMNtts07xuDyu0DRVFBwAAAGwuX/3qV/PWW29l4sSJWbRoUfbcc8/MnDkztbW1RacBAAAAALRar732WkaPHp0lS5Zk2223zQEHHJCHH3442267bdFpAAAAAACtzuOPP56DDjqo+f1ZZ52VJDnxxBMzbdq0nHvuuVm1alVOO+20LF26NAcccEBmzpyZysrKopIBAAAAAFqFD5uvTp06NfPmzcvNN9+cpUuXpnv37jn88MNz2WWXpX379kUlAwAAAAAUburUqUmSIUOGtFj/8Y9/nLFjxyZJrr322pTL5YwaNSpr1qzJ0KFDc+ONN37CpQAAAAAArcuG5qtbbrll/uM//iNTpkzJqlWrsuOOO2bUqFGZMGFCAbUAAAAAAK3Hm2++ma9//et54403UlNTk/r6+tx333057LDDkti7CgAAAADwQT5svvrqq6/auwoAAAAA8BHYwwptQ6mpqamp6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2qZy0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtF3logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLvKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HaViw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoO0qFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNtVLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLarXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG1XuegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANquctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Adjx47NyJEji84AAAAAAAAAAAAAAAAAAAAAAAAAAAAA/gwVRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw2VAqlT70/MUXX5zrrrsuTU1Nn1ARAAAAAAAAAAAAAAAAAAAAAAAAAAAA8HGoKDoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAz4Y33nij+fXPfvazTJw4Mc8991zzWlVVVaqqqopIAwAAAAAAAAAAAAAAAAAAAAAAAAAAAD6CctEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfDbU1dU1HzU1NSmVSi3WqqqqMnbs2IwcObL5niFDhmTcuHEZP358tt5669TW1ub73/9+Vq1alZNOOimdOnVKr169cu+997Z41vz583PEEUekqqoqtbW1OeGEE/L2229/wt8YAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhvKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAh7n55pvTtWvXPProoxk3blzOOOOMfOUrX8nnP//5PPnkkzn88MNzwgkn5He/+12SZOnSpTn44IOz11575fHHH8/MmTOzePHiHHvssQV/EwAAAAAAAAAAAAAAAAAAAAAAAAAAAPh0KhcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+mf//+mTBhQnr37p0LLrgglZWV6dq1a0499dT07t07EydOzJIlSzJv3rwkyQ033JC99torl19+efr27Zu99torP/rRj/LAAw/k+eefL/jbAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKdPRdEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8GHq6+ubX2+xxRbZZptt0q9fv+a12traJMmbb76ZJHn66afzwAMPpKqq6j2ftXDhwuy6666buRgAAAAAAAAAAAAAAAAAAAAAAAAAAAA+WyqKDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAP065duxbvS6VSi7VSqZQkWb9+fZJk5cqVOeqoo3LVVVe957O6deu2GUsBAAAAAAAAAAAAAAAAAAAAAAAAAADgs6mi6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4OA0YMCC33357Pve5z6Wiwn/PAQAAAAAAAAAAAAAAAAAAAAAAAAAAAJtbuegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+DideeaZeeeddzJ69Og89thjWbhwYe67776cdNJJWbduXdF5AAAAAAAAAAAAAAAAAAAAAAAAAAAA8KlTLjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPk7du3fPQw89lHXr1uXwww9Pv379Mn78+HTu3Dnlsv+uAwAAAAAAAAAAAAAAAAAAAAAAAAAAAD5upaampqaiIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABom8pFBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdpWLDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg7SoXHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA21UuOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAtqtcdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbVe56AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2q5y0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtF3logMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLvKRQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HaViw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoO0qFx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNv1/wACC4n4tBbHwwAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 12000x800 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Signal Count\n", + "0 Green 1\n", + "1 PickSuccess 1\n", + "2 PlaceSuccess 1\n", + "3 Sensor 1\n", + "Transitionen: 46\n", + "Events: 4\n", + "Sonstige: 42\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Time</th>\n", + " <th>Type</th>\n", + " <th>Node</th>\n", + " <th>Arguments</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.000</td>\n", + " <td>signalChanged</td>\n", + " <td>SensorNode</td>\n", + " <td>Sensor true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>9.138</td>\n", + " <td>serviceClientSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService-SensorCall</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>9.156</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>9.168</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>GetSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>9.297</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>ProcessSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>9.337</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>9.429</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>TransitionSafe</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>9.493</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService SensorResponse</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>18.093</td>\n", + " <td>signalChanged</td>\n", + " <td>SelectorNode</td>\n", + " <td>Green true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>18.099</td>\n", + " <td>transitionFired</td>\n", + " <td>SelectorNode</td>\n", + " <td>SortGreen</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>18.205</td>\n", + " <td>topicSend</td>\n", + " <td>SelectorNode</td>\n", + " <td>RightCellTopic GreenOut</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>18.247</td>\n", + " <td>topicReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>RightCellTopic R-AwaitingControl</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>18.336</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>getControlService-R-AwaitingControl</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>18.396</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>getControlService GetControlIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>18.440</td>\n", + " <td>transitionFired</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>Get-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>18.597</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>getControlService GetControlOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>18.713</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>pickService-R-Ready</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>18.736</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>getControlService R-Ready</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18.736</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>pickService PickInput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>18.783</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>Pick-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>26.725</td>\n", + " <td>signalChanged</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PickSuccess true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>26.737</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PickingSuccess-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>26.785</td>\n", + " <td>serviceServerSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>pickService PickOutput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>26.908</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>placeService-R-ObjectPicked</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>26.928</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>pickService R-ObjectPicked</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>26.964</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>placeService PlaceInput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>27.004</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>Place-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>38.210</td>\n", + " <td>signalChanged</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PlaceSuccess true</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>38.214</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>SafeToSensorCall</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>38.311</td>\n", + " <td>serviceClientSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService-SensorCall</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>38.318</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>38.367</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>GetSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>38.399</td>\n", + " <td>transitionFired</td>\n", + " <td>SensorNode</td>\n", + " <td>ProcessSensorData-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>38.414</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SensorNode</td>\n", + " <td>sensorService SensorOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>38.460</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>TransitionSafe</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>38.520</td>\n", + " <td>transitionFired</td>\n", + " <td>ExecutorNode</td>\n", + " <td>PlacingSuccess-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>38.555</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>ExecutorNode</td>\n", + " <td>sensorService SensorResponse</td>\n", + " </tr>\n", + " <tr>\n", + " <th>37</th>\n", + " <td>38.566</td>\n", + " <td>serviceServerSend</td>\n", + " <td>ExecutorNode</td>\n", + " <td>placeService PlaceOutput-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>38</th>\n", + " <td>38.656</td>\n", + " <td>serviceClientSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>endControlService-R-ObjectPlaced</td>\n", + " </tr>\n", + " <tr>\n", + " <th>39</th>\n", + " <td>38.658</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>placeService R-ObjectPlaced</td>\n", + " </tr>\n", + " <tr>\n", + " <th>40</th>\n", + " <td>38.664</td>\n", + " <td>serviceServerReceive</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>endControlService EndControlIn-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>41</th>\n", + " <td>38.695</td>\n", + " <td>transitionFired</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>End-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>42</th>\n", + " <td>38.698</td>\n", + " <td>serviceServerSend</td>\n", + " <td>SynchronizerNode</td>\n", + " <td>endControlService EndControlOut-INSTANCE-0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>43</th>\n", + " <td>38.749</td>\n", + " <td>topicSend</td>\n", + " <td>RightControllerNode</td>\n", + " <td>UITopic R-Done</td>\n", + " </tr>\n", + " <tr>\n", + " <th>44</th>\n", + " <td>38.752</td>\n", + " <td>serviceClientReceive</td>\n", + " <td>RightControllerNode</td>\n", + " <td>endControlService R-Done</td>\n", + " </tr>\n", + " <tr>\n", + " <th>45</th>\n", + " <td>38.846</td>\n", + " <td>topicReceive</td>\n", + " <td>FeedbackNode</td>\n", + " <td>UITopic FeedbackIn</td>\n", + " </tr>\n", + " <tr>\n", + " <th>46</th>\n", + " <td>38.885</td>\n", + " <td>transitionFired</td>\n", + " <td>FeedbackNode</td>\n", + " <td>ShowFeedback</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Time Type Node \\\n", + "0 0.000 signalChanged SensorNode \n", + "1 9.138 serviceClientSend ExecutorNode \n", + "2 9.156 serviceServerReceive SensorNode \n", + "3 9.168 transitionFired SensorNode \n", + "4 9.297 transitionFired SensorNode \n", + "5 9.337 serviceServerSend SensorNode \n", + "6 9.429 transitionFired ExecutorNode \n", + "7 9.493 serviceClientReceive ExecutorNode \n", + "8 18.093 signalChanged SelectorNode \n", + "9 18.099 transitionFired SelectorNode \n", + "10 18.205 topicSend SelectorNode \n", + "11 18.247 topicReceive RightControllerNode \n", + "12 18.336 serviceClientSend RightControllerNode \n", + "13 18.396 serviceServerReceive SynchronizerNode \n", + "14 18.440 transitionFired SynchronizerNode \n", + "15 18.597 serviceServerSend SynchronizerNode \n", + "16 18.713 serviceClientSend RightControllerNode \n", + "17 18.736 serviceClientReceive RightControllerNode \n", + "18 18.736 serviceServerReceive ExecutorNode \n", + "19 18.783 transitionFired ExecutorNode \n", + "20 26.725 signalChanged ExecutorNode \n", + "21 26.737 transitionFired ExecutorNode \n", + "22 26.785 serviceServerSend ExecutorNode \n", + "23 26.908 serviceClientSend RightControllerNode \n", + "24 26.928 serviceClientReceive RightControllerNode \n", + "25 26.964 serviceServerReceive ExecutorNode \n", + "26 27.004 transitionFired ExecutorNode \n", + "27 38.210 signalChanged ExecutorNode \n", + "28 38.214 transitionFired ExecutorNode \n", + "29 38.311 serviceClientSend ExecutorNode \n", + "30 38.318 serviceServerReceive SensorNode \n", + "31 38.367 transitionFired SensorNode \n", + "32 38.399 transitionFired SensorNode \n", + "33 38.414 serviceServerSend SensorNode \n", + "34 38.460 transitionFired ExecutorNode \n", + "35 38.520 transitionFired ExecutorNode \n", + "36 38.555 serviceClientReceive ExecutorNode \n", + "37 38.566 serviceServerSend ExecutorNode \n", + "38 38.656 serviceClientSend RightControllerNode \n", + "39 38.658 serviceClientReceive RightControllerNode \n", + "40 38.664 serviceServerReceive SynchronizerNode \n", + "41 38.695 transitionFired SynchronizerNode \n", + "42 38.698 serviceServerSend SynchronizerNode \n", + "43 38.749 topicSend RightControllerNode \n", + "44 38.752 serviceClientReceive RightControllerNode \n", + "45 38.846 topicReceive FeedbackNode \n", + "46 38.885 transitionFired FeedbackNode \n", + "\n", + " Arguments \n", + "0 Sensor true \n", + "1 sensorService-SensorCall \n", + "2 sensorService SensorIn-INSTANCE-0 \n", + "3 GetSensorData-INSTANCE-0 \n", + "4 ProcessSensorData-INSTANCE-0 \n", + "5 sensorService SensorOut-INSTANCE-0 \n", + "6 TransitionSafe \n", + "7 sensorService SensorResponse \n", + "8 Green true \n", + "9 SortGreen \n", + "10 RightCellTopic GreenOut \n", + "11 RightCellTopic R-AwaitingControl \n", + "12 getControlService-R-AwaitingControl \n", + "13 getControlService GetControlIn-INSTANCE-0 \n", + "14 Get-INSTANCE-0 \n", + "15 getControlService GetControlOut-INSTANCE-0 \n", + "16 pickService-R-Ready \n", + "17 getControlService R-Ready \n", + "18 pickService PickInput-INSTANCE-0 \n", + "19 Pick-INSTANCE-0 \n", + "20 PickSuccess true \n", + "21 PickingSuccess-INSTANCE-0 \n", + "22 pickService PickOutput-INSTANCE-0 \n", + "23 placeService-R-ObjectPicked \n", + "24 pickService R-ObjectPicked \n", + "25 placeService PlaceInput-INSTANCE-0 \n", + "26 Place-INSTANCE-0 \n", + "27 PlaceSuccess true \n", + "28 SafeToSensorCall \n", + "29 sensorService-SensorCall \n", + "30 sensorService SensorIn-INSTANCE-0 \n", + "31 GetSensorData-INSTANCE-0 \n", + "32 ProcessSensorData-INSTANCE-0 \n", + "33 sensorService SensorOut-INSTANCE-0 \n", + "34 TransitionSafe \n", + "35 PlacingSuccess-INSTANCE-0 \n", + "36 sensorService SensorResponse \n", + "37 placeService PlaceOutput-INSTANCE-0 \n", + "38 endControlService-R-ObjectPlaced \n", + "39 placeService R-ObjectPlaced \n", + "40 endControlService EndControlIn-INSTANCE-0 \n", + "41 End-INSTANCE-0 \n", + "42 endControlService EndControlOut-INSTANCE-0 \n", + "43 UITopic R-Done \n", + "44 endControlService R-Done \n", + "45 UITopic FeedbackIn \n", + "46 ShowFeedback " + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import datetime\n", + "\n", + "labelprops = dict(facecolor='white', alpha=0.8, linewidth=None,edgecolor='white', pad=1)\n", + "\n", + "def draw_brace(ax, xspan, yy, text):\n", + " \"\"\"Draws an annotated brace on the axes.\"\"\"\n", + " xmin, xmax = xspan\n", + " xspan = xmax - xmin\n", + " ax_xmin, ax_xmax = ax.get_xlim()\n", + " xax_span = ax_xmax - ax_xmin\n", + "\n", + " ymin, ymax = ax.get_ylim()\n", + " yspan = ymax - ymin\n", + " resolution = 601# int(xspan/xax_span*2000)*2+1 # guaranteed uneven\n", + " beta = 6000./xax_span # the higher this is, the smaller the radius\n", + "\n", + " \n", + " \n", + " x = np.linspace(xmin, xmax, resolution)\n", + " x_half = x[:int(resolution/2)+1]\n", + " y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))\n", + " + 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))\n", + " y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))\n", + " \n", + " y = yy + (.05*y - .01)*yspan # adjust vertical position\n", + "\n", + " ax.autoscale(False)\n", + " ax.plot(x, y, color='black', lw=1)\n", + "\n", + " if text:\n", + " ax.text((xmax+xmin)/2., yy+.07*yspan, text, ha='center', va='bottom', bbox=labelprops)\n", + "\n", + "tracefile = 'trace.txt'\n", + "with open(tracefile) as f:\n", + " data = list(map(lambda d: tuple(d.split(' ', 3)), f.read().strip().split('\\n')))\n", + "\n", + "beginning_time = int(data[0][0])/1e3\n", + "time_duration = int(data[-1][0])/1e3 - beginning_time\n", + "data = [(int(d[0])/1e3 - beginning_time,d[1],d[2],d[3]) for d in data]\n", + "\n", + "# signal change events\n", + "events = []\n", + "for (ts,type,node,args) in data:\n", + " if (type == 'signalChanged'):\n", + " signal,value = args.split(' ',1)\n", + " value = int(value == 'true') # Convert to int (0 or 1)\n", + " events += [(ts,signal,value)]\n", + "\n", + "# topic events\n", + "channel_times = []\n", + "channel_names = []\n", + "for (ts,type,node,args) in data:\n", + " if (type == 'topicReceive'):\n", + " signal, value = args.split(' ',1)\n", + " channel_times += [ts]\n", + " channel_names += [signal]\n", + "\n", + "# transition callback events\n", + "callback_times = []\n", + "callback_names = []\n", + "for (ts,type,node,args) in data:\n", + " if (type == 'transitionFired'):\n", + " callback_times += [ts]\n", + " if '-INSTANCE-' in args:\n", + " args = args.replace('-INSTANCE-','[') + ']'\n", + " callback_names += [args]\n", + "\n", + "# service call events\n", + "service_times = []\n", + "service_labels = []\n", + "service_names = []\n", + "service_instances = []\n", + "service_isEntries = []\n", + "current_calls = {}\n", + "calls = []\n", + "for (ts,type,node,args) in data:\n", + " if (type.startswith('serviceServer')):\n", + " service_times += [ts]\n", + " service,name = args.split(' ', 1)\n", + " _,_,instance = name.split('-',2)\n", + " service_names += [service]\n", + " service_instances += [instance]\n", + " isEntry = type == 'serviceServerReceive'\n", + " service_isEntries += [isEntry]\n", + " c_or_r = 'CALL' if isEntry else 'RETURN'\n", + " service_labels += [f\"{c_or_r} {service} (Instance {instance})\"]\n", + " if isEntry:\n", + " current_calls[(service,instance)] = ts\n", + " else:\n", + " calls += [(service,instance,current_calls[(service,instance)],ts)]\n", + "\n", + "# Create separate plots for each input signal\n", + "unique_signals = list(set(signal for _, signal, _ in events))\n", + "# hard code order and color\n", + "unique_signals = ['Green', 'Blue', 'Red', 'Sensor', 'PlaceSuccess', 'PickSuccess', 'Stop']\n", + "colors = {'Stop': 'tab:olive', 'PickSuccess': 'tab:orange', 'Green': 'tab:green', 'Red': 'tab:red',\n", + " 'PlaceSuccess': 'tab:brown', 'Blue': '#8c564b', 'Sensor': 'tab:olive',\n", + " 'Stop': 'tab:purple'}\n", + "\n", + "fig, ax = plt.subplots(constrained_layout=True,figsize=(120, 8))\n", + "\n", + "for signal in unique_signals:\n", + " signal_events = [(step, value) for step, s, value in events if s == signal]\n", + " signal_events.insert(0, (0, 0)) # every signal starts off\n", + " signal_events.append((len(data), signal_events[-1][1])) # and it ends with the value of the last change\n", + " steps, values = map(list, (zip(*signal_events)))\n", + " values = list(map(lambda x: x*(unique_signals.index(signal) + 1), values))\n", + " plt.step(steps, values, where='post', color=colors[signal])\n", + "\n", + "plt.xlabel('Time')\n", + "x1 = list(range(1, len(unique_signals) + 1))[:-1]\n", + "labels = unique_signals[:-1]\n", + "\n", + "topicheight = -1.3\n", + "\n", + "ax.vlines(channel_times, 0, topicheight, color=\"tab:grey\") # The vertical stems.\n", + "ax.plot(channel_times, np.zeros_like(channel_times), \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + "\n", + "# annotate lines\n", + "for d, r, i in zip(channel_times, channel_names, range(len(channel_names))):\n", + " ax.annotate(r, xy=(d, topicheight),\n", + " xytext=(0, 0), textcoords=\"offset points\",\n", + " horizontalalignment=\"center\",\n", + " verticalalignment=\"top\",bbox=labelprops)\n", + "\n", + "callbackheight = -3.5\n", + "callbackheights = []\n", + "current_indent = 0\n", + "i_max = 10\n", + "max_period = 5 # s\n", + "for i in range(len(callback_times)):\n", + " if i == 0 or current_indent == i_max or (callback_times[i] - callback_times[i-1] > max_period):\n", + " current_indent = 0\n", + " else:\n", + " current_indent += 1\n", + " callbackheights += [callbackheight - current_indent*.8]\n", + "\n", + "print(callback_times)\n", + "print(callbackheights)\n", + "\n", + "ax.vlines(callback_times, 0, callbackheights, color=\"tab:grey\") # The vertical stems.\n", + "ax.plot(callback_times, np.zeros_like(callback_times), \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + "\n", + "for d, r, i in zip(callback_times, callback_names, range(len(callback_names))):\n", + " ax.annotate(r, xy=(d, callbackheights[i]),\n", + " xytext=(0,0), textcoords=\"offset points\",\n", + " horizontalalignment=\"center\",\n", + " verticalalignment=\"top\",bbox=labelprops)\n", + "\n", + "baseserviceheight = 9.5\n", + "serviceheight = 9.5\n", + "\n", + "ki = 1\n", + "previous_start = 0\n", + "previous_end = 0\n", + "for (signal,instance,start,end) in calls: \n", + " if signal == \"Sensor\":\n", + " ax.vlines([start,end], 0, 8, color=\"tab:gray\") # The vertical stems.\n", + " ax.plot([start,end], [0,0], \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + " draw_brace(ax, (start, end), 8, f'{signal}[{instance}]')\n", + " continue\n", + " elif start < previous_end:\n", + " serviceheight+=1.5\n", + " current_serviceheight = serviceheight\n", + " elif start > previous_end:\n", + " current_serviceheight = baseserviceheight\n", + " elif end > previous_end:\n", + " current_serviceheight = serviceheight\n", + " else:\n", + " pass\n", + " ax.vlines([start,end], 0, current_serviceheight, color=\"tab:gray\") # The vertical stems.\n", + " ax.plot([start,end], [0,0], \"o\", color=\"k\", markerfacecolor=\"w\") # Baseline and markers on it.\n", + "\n", + " draw_brace(ax, (start, end), current_serviceheight, f'{signal}[{instance}]')\n", + "\n", + " previous_start = start\n", + " previous_end = end\n", + " ki += 1\n", + "\n", + "for signal in unique_signals:\n", + " signal_events = [(step, value) for step, s, value in events if s == signal]\n", + " signal_events.insert(0, (0, 0)) # every signal starts off\n", + " signal_events.append((len(data), signal_events[-1][1])) # and it ends with the value of the last change\n", + " steps, values = map(list, (zip(*signal_events)))\n", + " values = list(map(lambda x: x*(unique_signals.index(signal) + 1), values))\n", + " plt.step(steps, values, where='post', color=colors[signal])\n", + "\n", + "plt.yticks(x1, labels)\n", + "plt.xlim(data[0][0] - 0.01*time_duration, data[-1][0] + 0.05*time_duration)\n", + "\n", + "ax.text(-3,3,\"Input Signals\",rotation='vertical')\n", + "ax.text(-3,11,\"Service Calls\",rotation='vertical')\n", + "ax.text(-0.8,-2,\"Topics\",rotation='vertical')\n", + "ax.text(-1.5,-6,\"Transitions\\nwith\\nHandlers\",rotation='vertical',ma='center')\n", + "\n", + "plt.step([data[0][0] - 0.01*time_duration, data[-1][0] + 0.05*time_duration], [0,0], where='post', color='black')\n", + "\n", + "plt.ylim(-9, serviceheight + 4)\n", + "plt.savefig(\"timeline-real-runtime.pdf\")\n", + "plt.show()\n", + "\n", + "# Create a table showing how often each signal name appears\n", + "signal_counts = pd.DataFrame(events, columns=['Step', 'Signal', 'Value']).groupby('Signal').size().reset_index(name='Count')\n", + "print(signal_counts)\n", + "\n", + "print(\"Transitionen: {}\".format(len(data) - 1))\n", + "print(\"Events: {}\".format(len(events)))\n", + "print(\"Sonstige: {}\\n\".format(len(data)-len(events) - 1))\n", + "\n", + "# Convert the 'data' list to a Pandas DataFrame and print it\n", + "data_df = pd.DataFrame(data, columns=['Time','Type', 'Node', 'Arguments'])\n", + "pd.set_option('display.max_rows', None)\n", + "pd.set_option('display.max_columns', None)\n", + "data_df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/tools/timeline/timeline-real-runtime.pdf b/tools/timeline/timeline-real-runtime.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0f2739b760ca5ceaaea58a5c8deabda2fa7a6ffe Binary files /dev/null and b/tools/timeline/timeline-real-runtime.pdf differ diff --git a/tools/timeline/trace.txt b/tools/timeline/trace.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6840f3a39c79a9d7b481c78a02dffd2b81d025c --- /dev/null +++ b/tools/timeline/trace.txt @@ -0,0 +1,47 @@ +1709654536226 signalChanged SensorNode Sensor true +1709654545364 serviceClientSend ExecutorNode sensorService-SensorCall +1709654545382 serviceServerReceive SensorNode sensorService SensorIn-INSTANCE-0 +1709654545394 transitionFired SensorNode GetSensorData-INSTANCE-0 +1709654545523 transitionFired SensorNode ProcessSensorData-INSTANCE-0 +1709654545563 serviceServerSend SensorNode sensorService SensorOut-INSTANCE-0 +1709654545655 transitionFired ExecutorNode TransitionSafe +1709654545719 serviceClientReceive ExecutorNode sensorService SensorResponse +1709654554319 signalChanged SelectorNode Green true +1709654554325 transitionFired SelectorNode SortGreen +1709654554431 topicSend SelectorNode RightCellTopic GreenOut +1709654554473 topicReceive RightControllerNode RightCellTopic R-AwaitingControl +1709654554562 serviceClientSend RightControllerNode getControlService-R-AwaitingControl +1709654554622 serviceServerReceive SynchronizerNode getControlService GetControlIn-INSTANCE-0 +1709654554666 transitionFired SynchronizerNode Get-INSTANCE-0 +1709654554823 serviceServerSend SynchronizerNode getControlService GetControlOut-INSTANCE-0 +1709654554939 serviceClientSend RightControllerNode pickService-R-Ready +1709654554962 serviceClientReceive RightControllerNode getControlService R-Ready +1709654554962 serviceServerReceive ExecutorNode pickService PickInput-INSTANCE-0 +1709654555009 transitionFired ExecutorNode Pick-INSTANCE-0 +1709654562951 signalChanged ExecutorNode PickSuccess true +1709654562963 transitionFired ExecutorNode PickingSuccess-INSTANCE-0 +1709654563011 serviceServerSend ExecutorNode pickService PickOutput-INSTANCE-0 +1709654563134 serviceClientSend RightControllerNode placeService-R-ObjectPicked +1709654563154 serviceClientReceive RightControllerNode pickService R-ObjectPicked +1709654563190 serviceServerReceive ExecutorNode placeService PlaceInput-INSTANCE-0 +1709654563230 transitionFired ExecutorNode Place-INSTANCE-0 +1709654574436 signalChanged ExecutorNode PlaceSuccess true +1709654574440 transitionFired ExecutorNode SafeToSensorCall +1709654574537 serviceClientSend ExecutorNode sensorService-SensorCall +1709654574544 serviceServerReceive SensorNode sensorService SensorIn-INSTANCE-0 +1709654574593 transitionFired SensorNode GetSensorData-INSTANCE-0 +1709654574625 transitionFired SensorNode ProcessSensorData-INSTANCE-0 +1709654574640 serviceServerSend SensorNode sensorService SensorOut-INSTANCE-0 +1709654574686 transitionFired ExecutorNode TransitionSafe +1709654574746 transitionFired ExecutorNode PlacingSuccess-INSTANCE-0 +1709654574781 serviceClientReceive ExecutorNode sensorService SensorResponse +1709654574792 serviceServerSend ExecutorNode placeService PlaceOutput-INSTANCE-0 +1709654574882 serviceClientSend RightControllerNode endControlService-R-ObjectPlaced +1709654574884 serviceClientReceive RightControllerNode placeService R-ObjectPlaced +1709654574890 serviceServerReceive SynchronizerNode endControlService EndControlIn-INSTANCE-0 +1709654574921 transitionFired SynchronizerNode End-INSTANCE-0 +1709654574924 serviceServerSend SynchronizerNode endControlService EndControlOut-INSTANCE-0 +1709654574975 topicSend RightControllerNode UITopic R-Done +1709654574978 serviceClientReceive RightControllerNode endControlService R-Done +1709654575072 topicReceive FeedbackNode UITopic FeedbackIn +1709654575111 transitionFired FeedbackNode ShowFeedback