Safe Adaptation of Cobotic Cells based on Petri Nets

Sebastian Ebert
sebastian.ebert@tu-dresden.de
Technische Universitat Dresden

Dresden, Germany

ABSTRACT

Collaborative robotic cells combine human skills with the latest ad-
vancements in robotic accuracy and reliability. Cobotic cell parts are
distributed and adapt their behavior to changing tasks and environ-
ments. The specific missions of cobotic cells, depend on their field
of application, but are critical for human safety, which introduces
complexity, increasing testing and development effort. Component-
based software engineering is used to manage complexity, but en-
suring safety and correctness requires verification and validation,
which is complex and demanding to re-ensure, when composed
behavior changes. This also applies to the widely used middleware
Robot Operating System (ROS), where existing approaches only
model high level communication or integrate models. Also, verifi-
cation of cobotic cell must reflect their context-adaptivity, to check
safety critical reactions to contexts-changes. To overcome these
inhibitors, a model-driven development approach based on Petri
nets is proposed, modeling central aspects of ROS-based cobotic
cells. By using formal models, the testing effort at development
time is reduced, because global behavior remains formally proven,
and only local components have to be retested. Within this work,
the plans for this model-driven software approach are reported.
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1 INTRODUCTION

Design, development and extension of robotic software systems
with human co-working is a complex task. Such cobotic cells [13]
consist of physically distributed components [20] sharing space
with human co-workers, necessitating adaptation to changing en-
vironments and tasks [15]. Consequently, cobotic software must be
guaranteed to function correctly (following system specification)
and safe, by not causing harm to humans or machines while also self-
adapting to changing contexts [26, 27]. To ensure certifiability of
cobotic systems, safety and correctness have to be verified and val-
idated. Dealing with these two aspects introduces complexity into
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cobotic software, increasing needed development effort and amount
of testing [7]. Component-based software engineering (CBSE) pro-
vides decoupled component models, communication middlewares
and libraries [6] to deal with the introduced complexity. Such a pop-
ular component based framework is the Robot Operating System
(ROS), facilitating the development of robotic applications [32]. ROS
allows the creation of components controlling robotic hardware
and pure software components, by providing a structured commu-
nications layer, with various communication patterns such as a
publish-subscribe. A ROS-based process is called a node, and inside
nodes data-processing and control takes place. However, CBSE and
therefore also ROS focuses on improving reusability of implementa-
tions, and on making the validation process done by software tests
on component level more efficient by enabling reusing validation
results of a component when changing other components. If compo-
nent interfaces or communication patterns are changed, re-ensuring
validity of composed behavior is a complex and time-intensive task.
Model-driven software development based on formally defined
models addresses this complexity, by enabling the specification of
reusable and implementation independent system behaviors, re-
quirements and possible run-time adaptations, providing means for
analysis, verification purposes through system life-cycles, minimiz-
ing testing efforts. Existing approaches, such as [11, 24, 25], model
only parts of ROS-based systems or focus on specific programming
or communication aspects. Therefore, a model-driven approach re-
flecting the complete ROS communication, adaptation-aspects and
high-level control flow, enabling verifiable, efficient development
and safe adaptation of ROS components, is proposed here.

2 RESEARCH CHALLENGES

Selection and adaptation of a suitable modeling approach, grants
the abilities to unify modeling and simplify verification, but also
requires solving several challenges. Structural aspects of ROS sys-
tems such as distributed nodes containing models, packages and
parameters, as well as communication mechanisms, must be part
of this approach to enable analysis of incorrect system behavior.
RC1: Integration of Safety in Cobotic CBSE. Enabling model-
based integration of safety requires dealing with two classes of
safety issues. Firstly, a safe system has to handle external events,
occurring expected or unexpected [34], within the proximity of a
system. Expected external events occur at run-time and are already
known at development time. Unexpected external events are un-
known at development time, which means that one has to monitor
system models during run-time, to correct these them based on the
results. Secondly, safe systems have to handle internal expected and
unexpected events [37]. Expected internal events are anticipated
and handled explicitly. Unexpected events, cover incorrect system
behavior, to be handled on divergence from the specification. It is
necessary to integrate a modeling approach, handling these issues,
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into a model-driven chain, to guarantee that verified properties are
still valid within the final software.

RC2: Formal Interfaces for Safe Self-Adaptation. Any com-
putationally accessible information can be considered as context,
providing a basis for the aforementioned events [19, 35]. Thus, a
cobotic cell must be aware of context changes and has to adapt
its behavior to it. A safety-focused modeling approach for cobotic
cells, has to provide sound interfaces for contextual information,
so that a system and adaptations to it remain verifiable. These
spots of adaptation specifications must be kept generic, so that any
adaptation controlling technology can be connected, and thus act
as a framework for safe self-adaptations, verified independently
of the decision to carrying them out. Secondly, adaptations also
happen within the development time of cobotic cells on the basis
of code changes. Software is constantly being further developed,
which is subject of re-verification. If this is not facilitated, needed
development effort and amount of testing to be done is increased.

RC3: Compatibility for External Components. Using a sin-
gle modeling approach allows covering several aspects of cobotic
cells, such as communication and application workflows. However,
in real-world applications, because not every aspect of cobotic cells
can be modeled with the same technique, integrating existing sys-
tems and components is necessary to use their tested abilities. In
the following, both of these types are cumulated to external compo-
nents, which need to be integrated, in a tightly coupled manner into
verification to increase the meaningfulness of it, so that the han-
dling of safety issues as seen in challenge RC1 is still possible. This
is in contrast to the formal interfaces of challenge RC2, providing
generic integration for contextual information.

Development of Safe Cobotic Cells. Based on the challenges
identified, requirements can be concluded, which are necessary for
the development of safe adaptive cobotic cells. R1: Model-driven
development of cell structure and behavior, to facilitate inheriting
verified model properties to the final cobotic cell software (RC1 and
RC2). R2: Integration of robotic middleware concepts such
as communication and structure within the development phase,
to have a more meaningful verification (RC1). R3: Integration
of context-adaptation into the development process, to enable
verified run-time adaptation based on formal interfaces (RC2). R4:
Ensuring compatibility with external systems and models to
enable efficient integration of components into the verification pro-
cess (RC3). R5: Reduce development effort by reducing testing
effort with verification.

3 RELATED WORK

Modeling techniques and model-driven systems for ROS based ap-
plications are already facilitated by various approaches. Therefore,
formal and specifically Petri net-based approaches are analyzed in
the following, by applying the previously defined criteria to ROS,
as shown in table 1.

Formal Model-based ROS Approaches. Halder et al. [17] mod-
els and verifies ROS systems using real time properties, based on
timed automata models, whose model checking is done based on
Uppaal [2]. More in detail, the approach allows modeling the in-
ternal concepts of ROS nodes, such as the spinning mechanism,
queues and control loops. However the approach focuses only on
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Table 1: Related approaches, where full support is denoted
with m, partial support with 8 and no support with 0.
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topic-based communication between nodes and also not on con-
text adaptation and integration of external components. Wang et
al. [36] proposes a model-based design method for ROS based sys-
tems, that automatically generates executable C++ ROS code, based
on specification realized by a network of timed automata. Again, the
verification is done with Uppaal, to check for formalized safety re-
quirements. The overall modeling power in terms of ROS is similar
to Halder et al., but additionally a model-driven chain supports the
development of applications. Cheng et al. [5] considers especially
self-adaptive behavior and ensuring satisfaction of safety require-
ments across adaptations. Structuring Notation (GSN) models are
used to specify safety requirements. Based on the GSN specification,
ROS launch files are generated that are coupling an adaption con-
trolling node to application nodes and GSN based models. While
system run-time adaptation actions are published to topics sub-
scribed by nodes executing the adaptations. However, nodes are
only supported abstractly and communication only in terms of top-
ics. Formal verification based on linear logic is realized by Kortik et
al. [22], focusing on verification of correctness and not on designing
safe systems. The desired behavior of each node is encoded within
linear logic and then verified, by checking computational graph con-
sistency and type consistencies. Thus, structural aspects in terms
of nodes and communication aspects in terms of topics are only
modeled in highly abstract way. Zander et al. [38] comes up with
a model-driven chain based on ontological semantics. Developers
first create a local, not formal model, by specifying capabilities and
interfaces of for robotic software components. A generator parses
the model and generates executable code skeletons, containing
nodes, to be completed by developers.

Petri Net-based ROS Approaches. Petri nets formally model
behavior and structure of systems [8]. A Petri net is a bipartite graph
consisting of places and transitions, connected by directed arcs [8].
Places may contain a discrete number of tokens, consumed by firing
transition and recreated within their outputs. Pages encapsulate
hierarchically parts of Petri nets, connected by references. Petri nets
are able to model concurrent, asynchronous, distributed, parallel
and non-deterministic properties of systems, which are also subject
of cobotic applications [21], where potentially parallel and collab-
orative performed actions [23] contribute to a globally, between
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applications parts distributed, state. Non-determinism is introduced
in cobotic cells by their human parts and environment [14]. Cobotic
cells feature context-depended behavior for changing context such
as human presence [16], system evolution, environments, and non-
autonomous behavior. Thus, Petri nets are a good candidate for
modeling and developing cobotic, and therefore also ROS-based sys-
tems, including verification, validation and code generation, which
is already addressed by multiple works [26]. ASPiC by Lesire et
al. [24] allows modeling of robotic skills using control-flow Petri
net models called skill Petri nets, which are parameterized by re-
quired resources (locks, inputs, outputs). The approach is an acting
system based on the composition of these Skill Petri nets with Petri
nets acting as sound compositional control flow operators to action
plans. To be able to connect to the ROS middleware, the approach
includes the modeling and, thus, binding of ROS action interfaces.
Unfortunately, no structural aspects are included, and the whole
approach runs on one ROS node. Dondrup et al. [11] deals with
handling interaction between agents (devices or robots) and hu-
mans, by modeling interaction patterns as Petri nets mapping to
deterministic finite state machines. A developer specifies Petri nets,
based on a modeling language, which is used for the automatic
generation of the mapped Petri nets. Transitions, of the Petri nets,
are bound to ROS action servers and triggered whenever a bound
transition fires. Summarized, all analyzed approaches do not fully
support ROS features and only a few provide context-adaptation
and external components, but model-driven chains are common.

Petri Nets in Robotics. Beside approaches, which are mod-
eling ROS concepts, Petri nets are widely used in modeling and
controlling distributed robotic systems. Moutinho [28] proposes
distributed locally synchronous Petri nets connected with asynchro-
nous communication channels. The work of Bera [3] describes an
architectural framework for distributed and communicating Petri
nets based on fixed interaction patterns. Robotic Task Models [30]
are Petri nets controlled by central coordinators running robotic
workflows consisting of primitive tasks. The approach for Petri
net based task planning by Kotb [23] allows distributed robotic
agents to collaborate based on Petri net modeled abilities. Figat [12]
presents in his work a way to describe robotic workflow execution,
and how to generate a distributed ROS system based on it, although
itself does not model ROS concepts.

4 PROPOSED SOLUTION

In the following, an approach is presented, treating the pointed out
requirements, by providing a modeling formalism, a model-driven
development chain and a software architecture collectively referred
to as Distributed Petri Nets to ROS (DiNeROS).

Modeling Approach ROS-based Systems specialize the afore-
mentioned cobotic cell properties in terms of communication, where
ROS provides synchronous communication (services) and asynchro-
nous communication (topics, actions), and distribution by nodes
contained in packages, configured by parameters. Thus, the Petri
net formalism is also a good candidate for ROS-based systems.
However, there are missing aspects, but fortunately Petri nets are
extensible [18, 31, 33]. Modeling ROS-based communicating nets, is
done with channel submodels, parameterized by capacities and en-
capsulated to hide their complexity. Therefore, specific submodels
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for each communication type, such as topics exemplary shown in
figure 1, are included, where the topic transition maps to a p/t-net,
representing the underlying ROS mechanisms. Parallel communi-
cation type specific behavior of message creation and processing
is realized by fixed Petri net patterns. Distribution specifics, such
as physical locations, packages and nodes, are modeled by pages
with attached metadata. Context-specific and non-autonomous be-
havior, is added based on toggling transitions with binary input
signals and giving feedback based on integer valued output signals
on places providing a generic interface for adaptions, shown within
left node in figure 1, treating challenge R3. Including new concepts,
such as channels and signals, is done in a sound way, by providing
mappings to place-transitions-nets (P/T-nets) [9], for which for-
mal properties can be guaranteed, and a tooling landscape exists,
solving R2. Sending primitive tokens between node-contained dis-
tributed Petri nets based on channels does not provide a powerful
tool, because applications need to exchange data. Using colored
Petri nets [31], would enable tokens containing data, but fewer
properties are guaranteed. Thus, binding data to tokens is done
similar to balloon types [1], by following a fixed, defined data for-
mat, representing a shared state. Therefore, this tokens have no
influence on execution semantics and model checking.
Development Chain. The modeling formalism just described
forms the basis for a model-driven development chain, which is
shown in figure 2 and that allows a safe, because verified, ROS appli-
cations to be developed on the basis of Petri nets. Within the chain
three development roles are existing: the modeler, a domain expert
creating Petri net models of the cobotic cell. Second, the developer,
implementing application logic, and third the safety-engineer, an
expert in safety which analysis possible safety threats and suggests
solutions. At the beginning of the chain, models, such as workflows
and safety models are defined as a global Petri net, encapsulating
ROS aspects as part of its formalism. The specification is created
with a Domain Specific Language (DSL) facilitating development
speed, and containing run-time adaptation spots based on signals
as interface, allowing to couple knowledge bases, such as hybrid
Petri nets [10], teaching data and simulations, for adaptation actions.
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Based on this DSL-created model, the global ROS Petri net is automat-
ically generated, which is input for the Petri Net Checker validating
the model to exclude possible syntactic errors. After that, the global
net is flatted to a P/T-net by the Petri Net Flatter tool and is input
to the model checking tool TINA [4]. Based on this, global system
behavior is evaluated by a safety-engineer against safety proper-
ties, based on state-reachability, liveness-, path-, boundedness-, and
invariant- analysis. A guidance tool helps the engineer to under-
stand the outputs of TINA within the context of DiNeROS. If a
model does not fulfill all safety requirements, it is updated by the
safety-engineer, and the chain is restarted with it. Subsequently, the
global net is automatically split into multiple local ROS Petri nets
contained in ROS nodes, depending on location metadata attached
to Petri net elements, by among other things splitting transitions
representing communication channels. In the end, implementation
stubs for ROS nodes are automatically generated, with the Pack-
age Generator, containing local ROS Petri nets as run-time models,
based on templates provided either by the developer or by DiNeROS.
This Petri net stub code is connected by a developer to application
code based on automatically generated callbacks and signals, pro-
viding the end of the model-driven chain resolving R1, by coupling
verifiable models and code, reducing development effort (R5).
Architecture. The system resulting from the model-driven chain
follows a centralized architecture with a cobotic coordinator as cen-
tral server and peer-to-peer communication between ROS-based
nodes. First of all, the architecture provides nodes, which are ei-
ther DiNeROS or adaptation nodes. DiNeROS nodes are basically
local Petri net controlled ROS-Nodes, created as output of the Pack-
age Generator. Hence, these nodes have their own state, contained
within tokens, which can only be accessed via the Petri net modeled
ROS communication interfaces and signals. They deal with various
concerns like controlling robotic workflows or processing sensor
data. Adaptation nodes, provide control and knowledge for run-time
self-adaptations of cobotic cells, treating challenge R3. They are cou-
pling self-adaptation control mechanisms [29], to DiNeROS nodes
via the cobotic coordinator. The input for adaptation nodes are
automatically updated output signals and their output are possible
new input signal values on detected changes. The cobotic coordina-
tor (CC) is the architectures central element extending ROS core
functionalities. Firstly, the CC handles signals and self-adaptation
processes by connecting adaptation- and DiNeROS-nodes, enabling
combining and applying adaptation node outputs via input-signals,
resulting in modified model behavior. Secondly, liveness guaran-
tees for all nodes and connected components are provided, based
on a distributed Petri net collecting node states, preventing for
example global deadlocks. As third functionality, the CC provides
integration for client-libraries based on the mentioned generic mod-
els relying on CC-side. Thus, the developer, is responsible to write
adapter code gluing client-connected components to CC-contained
models, solving requirement R4. Additionally, the CC provides reg-
istration and connection functions between nodes, resolved by the
ROS Core. Client-connected components, cover external component,
not generated by DiNeROS, and thus may following other modeling
or implementation techniques. They are connected to the overall
system based on generic connections models, and a client library.
The reason for the existence of these connectors is that not every
aspect of cobotics can be modeled equally well with Petri nets. The
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proposed architecture is well integrated into ROS, follows the CBSE
principals, and thus inherits its advantages, such as reusability and
improved development speed handling challenge R5.

5 PLAN FOR EVALUATION AND VALIDATION

The basis for evaluating the proposed approach is a multi-robot
assembly line, with workflow, world, safety and contextual models
represented as DiNeROS Petri nets. More in detail, a chemistry
laboratory is simulated, where chemicals are dynamically mixed,
analyzed and directly handed over to humans by robots based on
recipes, which is dangerous for humans. Additionally, the robot op-
erations are context-depended, and thus include adaptive behavior
when a human enters robot-operated areas. The evaluation will be
executed based on four aspects. Feasibility: It must be shown that
the developed architecture solves the identified challenges R1-R5
and that the approach works with ROS 1 and 2, to support ROS
features of both existing versions (R2). Performance: This aspect
is concerned with evaluating the performance of single compo-
nents and the overall system. Especially the cobotic coordinator,
system generation, node interaction, model transformation and
analysis are crucial. Soundness: The meaningfulness of the mod-
eling approach and thus which formal properties are guaranteed,
by providing a mapping to P/T-nets. Interaction: Validation of
the envisioned architecture, realized by evaluating the interactions
between components and environment.

6 EXPECTED CONTRIBUTIONS

The overall research contribution will be the envisioned model-
driven architecture for cobotic cells, a framework for the safe devel-
opment of cobotic applications. The first part of this is the DiNeROS
Petri net based modeling approach for ROS-based systems, includ-
ing a description format. The second part is the DiNeROS devel-
opment chain, facilitating model-driven development, including
the stub-code generation for Petri net based actors. The third part
is concerned with the context-adaptivity provided by the generic
signal-based interfaces and the adaptation nodes. This includes the
integration of hybrid Petri nets as simulation knowledge base. The
final part combines all the envisioned parts by providing the cobotic
coordinator as central integrator for context-adaption, connections
to external components and liveness guarantees.

7 CURRENT STATUS

After two years, this PhD thesis is now within the central phase
of implementing its main contributions. An overview of relevant
literature and approaches is in the final phase of construction, and
will be finished within this year. The overall modeling approach,
the model-driven development chain and architecture in its require-
ments and structure is being considered conceptually. The work on
a core model-driven development chain will be finished this year,
dealing with DiNeROS-nodes. This will be the basis, to be extended
by the self-adaptation aspects including an adaptation node frame-
work, the integration of external components and guiding tools
such as a DSL and analysis guidance. Once this is completed, the
envisioned concepts and components, are brought together within
the overall architecture and evaluated based on the presented plans.
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