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Abstract- Humanoid robots are envisioned in general house­
hold tasks. To be able to fulfill a given task the robot needs
to be equipped with knowledge concerning the manipulation
and interaction in the environment and with knowledge about
its own capabilities. When performing actions, e.g, opening
doors or imitating human reach to grasp movements special 3­
d trajectories are followed with the robot's end-effector. These
trajectories can not be executed in every part of the robot's arm
workspace. Therefore a task planner has to determine if and
how additional degrees of freedom such as the robot's upper
body or the robot's base can be moved in order to execute the
task-specific trajectory.
An approach is presented that computes placements for a
mobile manipulator online given a task-related 3-d trajectory. A
discrete representation of the robot arm 's reachable workspace
is used. Task-specific trajectories are interpreted as patterns
and searched in the reachability model using multi-dimensional
correlation. The relevance of the presented approach is demon­
strated in simulated positioning tasks.

I. INTRODUCTION

Application scenarios for humanoid robots or mobile ma­
nipulators (Fig. 1) include general household tasks. Kitchen
tasks for instance require fetching and carrying things, as
well as manipulating and interacting with the environment.
To accomplish these tasks, the robot has to use knowledge
about the specific environment and knowledge about its own
capabilities. It has to know how to open a cupboard or
how well it can grasp objects. The robot also has to decide
when to use which part of its body. We argue that not only
the question when to include the upper body is important
to accomplish tasks but also when to use the mobility of
the base. To execute simple trajectories it is not always
necessary to use the mobile base. On the contrary, if the
mobile base is unnecessarily used, e.g., while opening a
kitchen closet, additional forces have to be compensated.
These forces are due to the fixed grasping of the door handle
and the navigation errors of the mobile base. In this paper we
propose an online method that determines where to place the
robot. Furthermore, the method enables a planner to reason
whether the mobile base is needed in a given task.
In a previous work [1], a mobile manipulator is positioned
to execute linear constrained trajectories. However, more
general types of trajectories, are needed in environments like
a kitchen for opening doors and cupboards. Such specific,
task-related trajectories might not only be imposed by the
tool or object but also by requiring the robot to emulate
human motions. In order to imitate prototypical movements
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Fig. I. The DLR robot Rollin ' Justin.

of humans to reach an object [2] a task planner has to reason
about where to place the robot.
We propose an algorithm that uses a model of the reachable
workspace of a robot arm to determine where the robot can
be placed or if a given task is solvable at all. We present
results for 3-d trajectories using the example of opening
a closet. Once the mobile manipulator is positioned, the
trajectory is executed without using the mobile base.

II. RELATED WORK

The use of models encapsulating robot specific knowledge
was recently taken up by several research groups. Pettre et
al. [3] make the animation of a digital actor more efficient by
dividing the large number of degrees offreedoms (DOF) of a
humanoid into functional units providing the locomotion and
the manipulation capabilities. Diankov et al. [4] use a similar
functional structure for their humanoid robot to plan a path
from a given start position to an object to be manipulated.
In the process they furthermore consider a model of the
reachable workspace of the robot arm to decide where the
robot may stand to grasp an object and thus focus the search.
Gienger et al. [5] use an object-specific model of the grasping
capabilities of their humanoid robot to optimize the whole
body motion to reach and grasp an object.
Most approaches to constrained trajectory planning for mo­
bile manipulators combine the positioning of the robot with
the search for feasible trajectories for the robot arm in
the configuration space (C-space). Optimization and path
planning techniques are used. Optimization techniques are
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Fig. 3. Shows a sphere inscribed into the cube (a), exemplary frames for a
point on the sphere (b), valid inverse kinematics solutions on a sphere (c).

Fig. 2. (Left) Trajectory for opening a closet. (Right) A zoomed view.

applied to the whole kinematic chain. Multi-criteria opti­
mization can also be used for positioning a mobile manip­
ulator to reach a point. However choosing criteria weights,
competing criteria, and the resulting local minima pose a
great challenge [6]. When planning constraint motions for a
mobile manipulator Stilman [7] uses the Jacobian transpose
to project a given sample configuration into the subspace
of configurations valid for the motion. However, the system
always moves the mobile base to accomplish a task. For
simple tasks this may not always be necessary. Furthermore ,
due to positioning inaccuracy of the mobile base additional
forces will act at the fixed connection of the TCP, e.g., when
opening a drawer. These have to be compensated. Diankov et
al. [8] claim that fixed grasps on objects limit manipulation
capabilities. They propose to use a set of caging grasps
during path planning and execution to extend the possibilities
of a mobile manipulator to fulfill the task. Whether or not
a trajectory exists is determined by a timeout for the path
search. In contrast, we aim at providing a decision module
that can predict with high probability whether or not and
where a trajectory is possible. The module is based on a
reachability model for a robot arm and not on traditional
path planning techniques.

III. PROBLEM ANALYSIS

In service robotic applications, unconstrained pick and
place tasks are often encountered. In these tasks, the robot
moves an object from a start to a goal position. To perform
these tasks, standard path planning algorithms can be queried
for a suitable path. However, not only unconstrained, freely
plannable paths are needed. Interaction with the environment
is subject to physical constraints. For opening a closet, the
tool center point (TCP) attached to the last link of a robot
arm is constrained to move on a circular path (Fig. 2). For
a frame attached to the handle of the closet, the orientation
of the z-axis (blue arrow) constantly changes. The radius
and orientation of this path are connected with the design of
the closet. Due to the robot arm kinematics and link limits,
executing constrained trajectories will not be possible at
arbitrary positions in a robot arm's workspace. Depending on
a robot arm's capabilities or the arm's attachment to an upper
body, some mobile manipulators may not be able to perform
certain tasks at all, like opening a closet at a certain height. A
method is needed to analyze the capabilities of a robot given
an environment and typical tasks performed therein. There­
fore, we are interested in a method that works for generic 3-d

trajectories of the robot arm TCP and determines where these
trajectories are situated in a robot arm's workspace. Given
this information, a mobile manipulator can be placed easily.
In [1], we presented a method to search for linear constrained
trajectories. However, this search method cannot be extended
to cover 3-d trajectories. In this paper, we present a method to
determine for given 3-d trajectories, where these trajectories
are possible in a robot arm's workspace. We use a model of a
robot arm's reachable workspace which is briefly introduced
in Sec. IV. In the first stage, the model is analyzed. Sec.V
describes how regions are extracted where the given 3-d
cartesian space trajectory is possible. These are used to infer
placements for the mobile manipulator. In the second stage,
the placements are checked for collision-free execution of
the trajectory. Results are reported in section VI.

IV. CAPABILITIES OF THE ROBOT ARMS

For a robot arm, the information which regions of the
workspace are reachable from what directions can be dis­
cretized and described in a model [9]. We briefly summarize
its main points in the following paragraph.
The theoretically possible robot arm workspace is enveloped
by a cube and subdivided into equally-sized sub cubes
Into each cube a sphere is inscribed and on this sphere n
points are uniformly distributed (Fig. 3 (a), (c)). Frames are
generated for each point on the sphere and serve as the
target tool center point (TCP) for the inverse kinematics
of the robot arm (Fig. 3 (b)). The normal to the sphere
at a sphere point determines the z-axis (blue arrow) of the
TCP frame. The orientation of the x- and y-axis is sampled
equidistantly. If a solution is found for the specific frame
then the frame is reachable. This fact is visualized by a
black line perforating the sphere at the corresponding point.
The spheres visualize the reachability for a region and are
therefore called reachability spheres. The reachability sphere
map is the aggregation of all spheres. This model can be used
to visualize and inspect the orientation dependent reacha­
bility across the workspace and to approximate the shape
of the robot arm workspace. Furthermore, the underlying
data structure can be used to gather statistics about the
workspace as well as perform task planning as shown in
the following. Fig. 4 shows the reachability sphere map for
the right arm of the robot Rollin' Justin. The map was cut
in half for better inspection of the structure. The spheres
are colored with respect to their reachability index D [9]
which is the percentage of points on the sphere that are
reachable (Fig. 5). The reachability index has a mean of
53 %, meaning that 53 % of the points on the sphere are
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Fig. 6. Discretization of a trajectory. (Left) 2-d view of mapping transla­
tions on the sphere map grid. (Right) Mapping of the frame orientation to
a point on the sphere.

mapped to.

f(tt) : IR3 _ > ]N3 with f(tt) = (p[l].x,p[l].y,p[l] .z) (1)

ccerdlnates I
(2,3)

Fig. 4. The reachable workspace of the 7 DOF DLR light weight robot
arm.

Fig. 5. Spheres with different reachability indices D from the reachability
map for the right arm of Rollin' Justin.

(4)
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The angle between the projected axis and the x-axis of frame
Fk,O is then computed (Eq. 4) and discretized. It determines
the pattern element p[l].o E [l..m] with p[l].o = l;o +O .5J.
~o denotes the discretization step width of the orientation
around Z. Fig. 7 shows an example trajectory for opening a
cupboard and the search pattern in the space of spheres . In
Fig. 7 (left) the large coordinate frames represent the original
trajectory frames. The smaller frames represent the mapped
frames in the sphere data structure . In Fig.7 (right) the red

p[l].k = argminiE[I,nj(acos(ziT
. ii)) (2)

For the computation of the reachability sphere map the
orientation around the z-axis of a frame (Fig. 3(b» was
discretized into m steps. In the last part of the mapping
process the orientation around the z-axis of frame Fi has
to be mapped to the sphere data structure, i.e. to one of
these m orientations. Let Fk,O be the frame belonging to the
previously computed sphere point k and nominal orientation
O. The x-axis Xl of frame Fi is projected onto the xy-plane
of the coordinate system defined by the frame Fk,O (Eq. 3).
Let Px y be the projection matrix for projection onto the xy­
plane.

Let f be the function that maps tt to a sphere in the
pattern given the discretization, i.e. the sphere diameter,
also underlying the reachability sphere map. Each sphere is
represented by an offset in p[l].x,p[l] .y,p[l] .z of the sphere
space with respect to the point of reference of the pattern .
The frame F can e(u~llY~e~ be)nterpreted as a coordinate

b F x Y z t) ' h - - - t- IR3system ase = 0 0 0 1 WIt x, y, z, E .

In a second step, the z-axis ii of frame Fi is mapped to the
best fitting point on the sphere and determines the pattern
element p[l].k E [1 ,n]. Let Fi,o be the coordinate system
attributed to point i and nominal orientation 0 around
Zi,o , Note that Zi ,o = Zi,m = Zi and IZil = liil = 1. Eq.
2 describes the mapping which is illustrated in Fig. 6 (right) .

D=highD=m iddleD=low

V. PLACEMENT FOR 3-D TRAJECTORIES

A. The search pattern

We use the example of opening a closet introduced in Sec.
Ill to illustrate our method. If a closet has to be opened, the
end-effector grasps the handle and moves on an arc (Fig. 2).
We assume the trajectory template followed by the robot arm
TCP to be given as a sampled sequence of frames Fi , l >
o with respect to a local reference system. A frame Fi is

represented as a homogenous matrix Fl = (;;. t;) with

R; = (x, fj, Z) E 80(3) and tt E IR3 describing rigid
body rotation and translation. The frames are mapped to their
discrete representations in the model. The set of accordingly
mapped frames Fi is called search pattern p hereafter. The
mapping works in the following manner. For each position of
the Cartesian trajectory we first determine the sphere it maps
to. Fig. 6 (left) exemplarily shows a trajectory superimposed
on the workspace discretization underlying the reachability
sphere maps. The 2-d projection was chosen for illustration.
The filled spheres symbolize those spheres the trajectory is

reachable. This index gives a general impression of the robot
arm's capabilities and does not provide information about
directional preferences. However, it can be seen that the
capability of Rollin' Justin to reach regions varies strongly
across the workspace. Hence, specific trajectories are not
possible everywhere in the workspace. In the next section,
we show how the reachability representation can be used
to position the robot for 3-d trajectories. Note that the
representation is computed offline only once. In the current
implementation its size is 62 MB.
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S(ix , iy, i z) = D[ix]D[iy]D[iz]

i x, = ix + p[l].x , iYl = i y + p[l] .y, i z; = iz + p[l] .z

Fig. 7. (Left) The trajectory mapped to spheres. (Right) A zoomed view
showing the sphere points mapped.

lines show to which lines on the sphere the frames were
mapped.

B. The search for the trajectory in the workspace

Cross-correlation is a standard technique in signal pro­
cessing to determine the shift between two signals. The
signals are specified over the same domain, e.g. IR --+ IR for
audio signals over time or IR2

--+ IR for static grey images.
The result of a correlation is a signal in the same domain,
showing peaks at those locations where the two signals best
match each other. We use this idea to find the search pattern
obtained in Sec.V-A in the reachability sphere map. The
search is done by correlating the sphere data structure with
the given search pattern . Figuratively speaking the pattern is
moved across the 3-d data structure and compared with the
data present. Equation 5 implements the correlation between
the two signals. Let D be the 3-d data structure which
represents the reachability sphere map. The search pattern
p is obtained as described in the last section.

p .l en gth

(D *p) = L L L L S(iXl, iYl, i Zl )[p[l].k][p[l].o]
ix iy iz l=O

(5)
(6)

(7)

S(i x, iy, iz) in Eq. 6 describes the location ofa sphere in the
3-d reachability sphere map. i x , iy , iz iterate over the whole
workspace D minus the dimension of the 3-d search pattern.
In Eq. 7 the sphere offset of the pattern element l is added
to the current starting point of the pattern in the 3-d sphere
space. Given a number of discretized orientations around
the z-axis (Fig. 3(b)) the value of S(i x , i y, i z) [P [l ].k][P[l] .o]
encodes for point p[l] .k on the sphere whether the orientation
p[l] .o around the z-axis is reachable. The variable is 1 if the
orientation is reachable and 0 if it is not reachable. As a
result (D * p) is a representation of how well the trajectory
fits across the map. We search those places in the robot
arm workspace where the pattern fits completely. Fig. 8
exemplifies the correlation result for opening a closet at a
certain height. Justin 's torso is in its zero position and the
trajectory is at about shoulder height (Fig. 8 (top)). Since
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Fig. 8. (top) Justin in the Kitchen. (middle) Correlation result for the
trajectory. (bottom) Contour view of correlation result.

the trajectory is composed of 20 frames, the correlation result
ranges from 0 to 20 (Fig. 8 (middle) , (bottom)) . Note that the
positive x-axis indicates the front of the robot. A value of 20
(dark red) means all frames of the trajectory are predicted to
be reachable if the trajectory is started at the corresponding
point in the robot arm workspace. It can be seen that the
region in which the trajectory can be performed completely
is quite small in this example.
Note that with this method , the pattern will not be found if it
occurs in the image in a different orientation. The standard
solution to this is to rotate the pattern using a fixed stepsize .
Accordingly, the original cartesian space trajectory can be
rotated before being mapped into the sphere space.



C. Computing the robot base position

The reachability map is computed with respect to the
robot arm base. Thus if the robot arm base is moved, the
map moves accordingly. Once we have the position of the
trajectory in the robot arm workspace with respect to the
robot arm base, the position of the mobile manipulator with
respect to the world can be determined easily.
The z-axis of the world system is assumed to point upwards.
The transformation from the old to the new robot base
position involves only a rotation R around the z-axis of
the world system and a translation t in the xy plane. Let
f = (x, y, z)T be the translation and R be the rotation of the
search pattern with respect to the map space for which the
correlation of Eq. 5 reaches the maximum. Eq. 8 gives the
target position of the arm base in a reference frame Fo, e.g.
the world base. The placement of the mobile base follows
directly.

T~rm = T2bject . (T~b.ir:ct)-1 = T2bject (;;. i) -1 (8)

D. Computational complexity

In this section we present the examination of complexity
that led us to perform the search in position space as
opposed to in frequency domain. Cross-correlation in image
processing customarily transforms two images into frequency
domain using fourier transformation. The reachability sphere
map and the search pattern are the correspondences of
the image. In frequency domain the spectra are multiplied
and the result is transformed back using inverse fourrier
transformation. It is known that the fast discrete fourier
transform (FFT) using Cooley-Tuckey's radix-2 algorithm
has a time complexity of O(N 10g(N)), where N is a power
of factor 2. Let N6 denote the volume of the discretized
robot workspace. The complexity is highest if the search
pattern has the dimension of the workspace, i.e. N p = ND.

According to the number of multiplications for a single FFT
[10], the total cost for two fourier transformations and for
the multiplication in frequency domain involved are

where 101 = n . m. n is the number of discretized ori­
entations, i.e. points on the sphere and m the number of
discretized orientations around z. Note that the cost of the
fourier transformation of the reachability map is neglected
because it can be computed once and used for different
planning tasks. In the case of the discretization of Justin's
arm workspace with side length N D = 40 spheres and 101 =
200 . 12 orientations, the total number of multiplications
Costfreq amount to 2.6 .109 .

In contrast, the number of multiplications for general cross­
correlation in the space domain amount to 101 ·N6 .N~ =
1.5 . 1011 , whereas a side length N» = 10 of the trajectory
map is assumed. Contrary to the general case, significant
optimizations can be applied here because only a few entries
in the trajectory volume are non-zero. Let Ipl denote the
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Fig. 9. (Left) The aliasing effect when sampling a 2-d trajectory. (Right)
A trajectory with a low amplitude.

length of the discretized trajectory, then the multiplications
amount to

Costspace = (ND - N p )3 . Ipl . (10)

Only a subvolume of the robots reachability map is consid­
ered, because the trajectory is requested to be completely
within the workspace of the robot. Whenever Ipl = N»,
the costs reach its maximum at N» = N D /4 . In the case
of Justin's arm, this corresponds to only 2.7 . 105 multi­
plications', which are four orders of magnitude fewer then
assessed for the correlation with the fourier transformations.

E. Discretization issues

In this section we describe the requirements for the data
representation and the trajectory representation that have
to be met to ensure the success of our approach. The
requirements for the reachability map concern the workspace
discretization step width, the number of points on the spheres
and the orientations around the z-axis. In general it can be
stated the greater the workspace discretization step width, i.e.
the sphere diameter, the worse the prediction performance.
A comer stone of our approach is that the spheres inscribed
in a subcube describe the reachability for this region. Due
to memory consumption the spheres cannot be arbitrarily
small. Therefore a sphere diameter of 0.05 m was empirically
chosen. If too few points are distributed on the sphere, then
direction-specific reachability is not represented well any­
more. In this paper the orientation of the z-axis is captured
by uniformly distributing 200 points across a sphere. In this
case the minimum angle between two points is 8.12°. The
orientation around the z axis was discretized into 12 steps.
To unambiguously represent the task-specific trajectory tem­
plate, the trajectory has to be sampled according to the
Nyquist-Shannon sampling theorem [11]. If this theorem is
violated and too few frames characterize the trajectory, the
trajectory cannot be correctly reproduced, i.e. the pattern
does not correctly represent the trajectory. In this case the
trajectory is aliased with a less frequent one (Fig. 9 left).
The search results are not valid for the original trajectory.
In this case the ratio of predicted to actually reachable
trajectories is low. For trajectories with low amplitude i.e.
amplitude < sphere radius (Fig. 9 right) we assume
that the interpolation assumption holds which underlies the
discretization of the robot arm workspace. It is assumed that
at each point of a subcube the same orientations are reachable
as on the sphere located at its center.
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RESULTS OF THE BRUTE FORCE SEARCH ARE COMPARED WITH THE
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TABLE II
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7
27

Fig. 10. The algorithm at a glance .

VI. EVALUATION

In this section we evaluate the presented approach for
different types of tasks and corresponding trajectories.
For reference the approach is summarized in Fig. 10.
The mobile humanoid robot Rollin' Justin [12] is used. It
consists of an humanoid upper body system mounted on a
mobile base with variable footprint. The humanoid upper
body is composed of a 3-DOF torso, two 7-DOF arms, two
4-finger hands and a head. The 7-DOF DLR light weight
robot arm serves as the left and the right arm of the robot
Rollin ' Justin. Inverse kinematics solutions were computed
as detailed in [13].

A. Naive search vs. model-based search

Without a reachability map, a brute force search could be
thought of to determine whether a given trajectory can be
performed by the robot. The start point is randomly sampled
using a uniform distribution. The trajectory is attached to
this start point. However the sample only contributes to the
computed success rate if the position of the first and last
frame of the trajectory lies within the hull of the reachable
workspace of the robot arm. The trajectory is checked for
reachability using inverse kinematics. A relative success
measure is computed from the number of successes. In Tab.I
we report the likelihood to find the arc for opening a closet at
a certain height in the workspace. Results are reported for the
brute force search and the reachability model based search
for the trajectory in one orientation. The results for the brute
force approach show that a lot of effort is wasted to find
valid trajectories. While our efficient approach needs 1.6 s
to find and verify the 96 trajectories, the naive approach finds
the same number of valid trajectories in 20 s. Considering
that the trajectories may still be inconsistent or colliding, the
advantages of our model-based approach are emphasized.

1since both volumes are binary, the multiplication can be replaced with
a simple binary AND operation.
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B. Validation ofsolutions

The correlation process itself is very efficient. It needs 25
ms to find all occurances of an arc trajectory (Fig. 2) with 20
frames in one orientation within the discretized workspace.
Only those correlation results are considered that lie in an
area of the workspace that is of interest for the given task.
The solutions have to be validated because of the following:

1) Generalization assumption: The correlation process
provides a number of starting points for trajectories. These
need to be checked for actual reachability since the reacha­
bility sphere map assumes that entries in the map generalize
over the complete subregion, i.e. subcube. It is assumed
that at each point of a subcube the same orientations are
reachable as on the sphere located at its center, i.e. that the
reachability structure does not change for small increments
in space. Normally, this assumption will hold. However at
the inner and outer border of the reachable workspace or at
the border of structurally different regions, this assumption
may be violated.

2) Collision-free and consistent trajectories: Using the
reachability sphere map, reachability of the trajectory is
independently evaluated for the individual frames. It is
not guaranteed that the robot is able to follow a smooth
trajectory between frames, e.g., in the vicinity ofsingularities
reconfigurations of the robot arm will occur. Therefore each
trajectory is checked for consistency by setting a threshold
on the allowed link-wise change of two configurations for
two adjacent path steps. Additionally the trajectory is also
checked for collisions for the robot with the environment and
the robot arm with e.g. the head or the upper body.

C. Robots working in the kitchen

A robot working in a kitchen is above all required to
be able to open cupboards to extract dishes or fill the
dishwasher. Robot placements of the mobile manipulator
(Fig. 1) are computed and validated for opening the door of a
cupboard (Fig. 2). The trajectory search was only performed
for the original orientation of the trajectory. Results in
Tab. II are reported for two different configurations of the
movable upper-body of the robot Rollin 'Justin. The results
show significant differences for the two torso configurations.



Fig. II. Rollin' Justin is placed to open a closet. (a) The torso is in
configuration C I. (b) The torso is in configuration C2.

TABLE III

COMPUTATION TIMES FOR THE STEPS OF THE ALGORITHM.

humanoid robot Rollin' Justin. The proposed algorithm is
not only relevant for service robotic tasks. It can also be
used for online positioning industrial robots e.g. for welding
tasks or to compare the capabilities of different robot arms.
The presented method can be used to evaluate how well a
mobile manipulator is suited for specific environments. The
determined number of solutions for the constrained task can
be assumed to correlate with the ability of the robot to cope
with disturbances e.g. objects left behind by a human, or a
human standing in the way. It could be argued that the mobile
base can always be used for compensation. However, then the
robot cannot operate in tight spaces and has to compensate
forces occurring at the TCP.
The method is especially suited to decide whether or not
a task e.g., opening a door, can be done without using
the mobile base . This information could be used by a task
planner to decide which planner or execution component to
trigger. Navigation controllers on a real robot accumulate
navigation errors . Therefore a planned position will never be
exactly reached. In future work the proposed method should
be extended to cope with uncertainty in navigation and object
localization.

total
1620 ms

(b)

0.113 ms
reconfiguration

(a)

25 ms
correlation

For configuration C2 more reachable solutions are found.
These results indicate that the presented approach is able
to decide on a beneficial torso configuration for a given
task. Fig. 11 exemplarily shows a robot placement for each
torso configuration. After the validation step, a set of valid
solutions remain, that a task planner can choose from. In
both cases, the number of collisions is striking. Since the
workspace of the arm is nearly symmetric (compare FigA)
solutions are found in front of and behind the torso of Justin
(Fig . 8). In the latter case Justin has to be placed inside
the kitchen closets to execute the trajectories. Furthermore
often collisions of the arm and the head were encountered.
The results for the check for consistency and freedom of
collision should be seen as a proof of concept. Our inverse
kinematics currently computes independent solutions for the
individual frames and does not exploit the null space of the
7-DOF robot arm to avoid collisions. For trajectories that
are currently invalid, we expect that there exist alternative
arm configurations that lead to consistent and collision-free
solutions. We measured the time consumption for each part
of the algorithm for the torso in configuration C I. The
computation times are summarized in Tab. III. The test was
performed on an Intel Pentium D 3 GHZ computer with 2 GB
memory. The accompanying video illustrates the algorithm
for the torso in configuration C1.

VII. CONCLUSIONS AND FUTURE WORKS

We presented an algorithm to position a mobile manip­
ulator to execute 3-d trajectories using a model describing
the capabilities of a robot arm. Trajectories are localized in
the reachability map using correlation and then validated.
Once a trajectory is found, deriving the corresponding mobile
manipulator position is straight forward. The method was
illustrated using the example of opening a closet using the
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