
Reuleaux: Robot Base Placement by Reachability
Analysis

Abhijit Makhal*
Department of Mechanical Engineering

Idaho State University

Pocatello, Idaho 83209

Email: makhabhi@isu.edu

Alex K. Goins
ROS-Industrial

Email: alex.goins@swri.org

Abstract—Before beginning any robot task, users must position
the robot’s base, a task that now depends entirely on user
intuition. While slight perturbation is tolerable for robots with
moveable bases, correcting the problem is imperative for fixed-
base robots if some essential task sections are out of reach. For
mobile manipulation robots, it is necessary to decide on a specific
base position before beginning manipulation tasks.

This paper presents Reuleaux, an open source library for
robot reachability analyses and base placement. It reduces the
amount of extra repositioning and removes the manual work of
identifying potential base locations. Based on the reachability
map, base placement locations of a whole robot or only the
arm can be efficiently determined. This can be applied to both
statically mounted robots, where the position of the robot and
workpiece ensure the maximum amount of work performed, and
to mobile robots, where the maximum amount of workable area
can be reached. The methods were tested on different robots of
different specifications and evaluated for tasks in simulation and
real world environment. Evaluation results indicate that Reuleaux
had significantly improved performance than prior existing
methods in terms of time-efficiency and range of applicability.

I. INTRODUCTION

The robotic industry’s ongoing advancements depend upon

state-of-the-art equipments- with unique specifications and

capabilities. As the hardware of the robotic systems are

developed, so as the softwares are metamorphosed. From the

perspective of an industry or household user, however, the

main goal of deploying a robotic system remains the same:

to successfully perform the desired task. Tasks can range

from intense industrial work such as welding, packaging, and

manipulation to relatively smaller scale of picking, placing or

grasping. For users to accept and employ a robotic system, it

must, (1) precisely execute the task, and (2) integrate well into

the user’s workspace. For both features, the user and the robot

should be aware of information about the robot’s reach and the

workspace. Without this knowledge, deployment of the robot

depends solely on user intuition. An incorrect intuition can

lead to human casualty or catastrophic damage to the robotic

system and workplace.

Non-expert users who do not have an in-depth understand-

ing of robot kinematics and the reachability challenges of

robots, might hold misconceptions that the workspace of a

robotic manipulator is sphere-shaped when the radius of the

arm is fully extended and in this region the robot’s end-effector

can move freely. On the contrary, the robotic arm’s workspace

depends fully on the constraints posed on its arm joints. In

the workspace, there are few positions where the arm can

reach freely; in some sections of the workspace, the arm faces

singularity. In this paper, the authors conferred few methods

by which the robot’s workspace could be fully utilized and

a suitable placement of the robot or manipulator base can be

achieved.

The paper makes the following three contributions to the

field of robotic workspace analysis and base placement, 1) A

method to generate and analyze the precise reachability of any

generic robotic arm in a time-efficient manner, 2) A method

to localize the feasible base positions of the robot for any

given user task and 3) A comparison and evaluation of these

methods on different robots with distinct characteristics.

II. RELATED WORK

One of the challenges in developing a useful robotic system

is designing a platform or workspace that lets the robot to

effectively complete the desired task. Initial work on path

planning and reachability was typically performed for simple

grasp points on objects [1], which involves creating a map

representing the areas of high dexterity for the manipulators.

This work was then extended to the use of reachability maps

to solve the inverse reachability task [2] and [3], where the

optimal base placement was found in order to perform the

desired grasp on an object. Work done by [4] examined ways

to simplify the reachability map by generating a capability

map, a simplified structure that permits faster and more

efficient searches of the map in order to solve the inverse

reachability problem.

These methods are limited as they solve only the general

problem of whether or not an inverse kinematics solution was

found. A given grasp location could mean that some or all of

the solutions found could be non-optimal (near singularities

or joint limits). The work of [5] presents the concept of

manipulability ellipsoid measure, which can be derived from

a Jacobian matrix of manipulators. The size of the ellipsoid

and the principal axes represent the manipulation ability in

a certain configuration and are thus used to determine the

effectiveness of a grasp at a given location. This work was

extended in terms of grasping and manipulation in [6].

137

2018 Second IEEE International Conference on Robotic Computing

0-7695-6370-8/18/31.00 ©2018 IEEE
DOI 10.1109/IRC.2018.00028



Fig. 1. Reachability Map representation. From left to right a) LWR 7DOF arm with self-collision checking, b) 6DOF JACO arm without self-collision
checking, c) right arm (7DOF) of PR2 mobile manipulator with self-collision checking. (Color representation with increasing reachability- Red, Yellow,
Green, SkyBlue and Blue)

To overcome the single grasp location issue, several papers

extended the inverse reachability problem to solve for trajecto-

ries. Various methods have been used to search the reachability

map in order to find the location where the desired trajectory

can be executed with the highest level of dexterity. [7] uses

sampling of the trajectory to find and overlay multiple base

placements; [8] uses a pattern search to fit the trajectory into

the area representing the field of high dexterity; and [9] uses a

cross-correlation technique to fit the desired trajectory to the

model of the robot reachability map. Further improvements

to the reachability map method were developed by [10] to

include the ability to add a transform offset from the original

end-effector location, which is useful if the robot is grasping

a tool with a non-zero length.

These methods allow planning for simple tasks, but they

require a task to be completely specified prior to evaluation.

[11] explores the case where a specific trajectory is not

given; rather the task has been simplified into a generalized

workspace environment where the robot must work. Here,

competing constraints are given. However, the operator still

evaluates and confirms the final base placement of the robot on

the mobile platform. For a simple operation with few operating

points, this can be done manually, but for more complex

parts and tasks such as welding pipes or assembling parts in

constrained spaces, a manual approach for validation may not

be feasible.

III. REACHABILITY MAP

A reachability map is a collection of all poses that the

robot’s end effector can reach. To accommodate the infinite

number of reachable poses, similar poses are clustered into

structures suitable for visualization and easy to access. The

structures also capture the directional information of reachable

poses, because several positions can be reached only from

a certain direction. An individual part of the structure is

represented as multimap data, which holds information about

it’s position, all reachable poses belonging to the structure,

and the reachability measure of that structure.

Algorithm 1 Generate Reachability Map

input (URDF of robot)

1: procedure GenerateReachMap
2: create VoxelStructure V
3: for each voxel vi in V do
4: create sphere s
5: checkforSelf Collision(s)

6: Store sfiltered in S
7: end for
8: for each si in S do
9: Sample surface and generate poses P

10: for each j in P do
11: findIKSolution (Pj)

12: if solution then
13: Store (si, Pj)

14: end if
15: di = FindReachabilityMeasure(si)
16: Store di with (si, Pj) in map

17: end for
18: end for
19: end procedure

A. Workspace Voxelization

Input to the creation of a robot reachability map procedure

is the Unified Robot Description Format (URDF) model of the

robot, from which a detailed robot description is obtained. The

robot’s hypothesized workspace is first voxelized to create a

square structure around the robot. The voxelization process is

performed by octree [12], a hierarchical data structure enabling

spatial partitioning and searching between voxels. The root

node of the octree is at the base of the manipulator, and every

node is connected to its eight children. The tree is extended

to the overestimation of the diameter of the robot arm in

an extended state. The size of the voxels required is task

dependent and thus user-defined. Tasks requiring a high degree

of accuracy will need a smaller voxel size in order to provide

138



more accurate results in the final base placement location. The

centers of voxels are determined, and a sphere with a radius

of the voxel’s resolution is placed in every voxel.

B. Self Collision Checking
The workspace regions where the robot body is present

should not be included in the workspace because end-effectors

cannot reach those sections due to collisions. For filtering

out such sections, as a preprocessing step, the robot body

is modeled as a collection of triangular meshes and checked

for collisions with the voxelized sphere centers. The sphere

centers in collisions with robot body are opted out of the

workspace structure; they are not further discretized for reach-

ability analysis. A collision checking library FCL [13] is used

for fast collision checking. This method provides an advantage

in terms of time efficiency since most other methods such as

[4] and [3], check for collisions only when obtaining solutions

from poses. The reachability map structure of three different

robots created with the Reuleaux library is shown in Fig. 1,

where maps in Fig. 1a and Fig. 1c are created with self-

collision checking and Fig. 1b is created without it.

Fig. 2. Discretization of a single voxel in the workspace. The cube (yellow)
is the voxel to be searched. A sphere (green) is fitted inside the cube. The
sphere is discretized with probable poses (red arrow)

C. Workspace Sampling
Uniform sampling of the joint space does not guarantee

uniform sampling in the Cartesian space. For uniformly sam-

pling the task space, the spheres representing the voxels are

sampled for uniform point distribution on the sphere by the

method presented in [14]. From every point of the distribution,

a direction is assumed towards the center of the sphere. As

depicted in Fig. 2, an individual voxel of the discretized

workspace is fitted with a sphere, and the sphere is sampled

for points on its surface. From an individual point, a direction

is considered towards the center of the sphere represented by

a red arrow. Considering a frame, the direction towards the

center of the sphere is the z-axis, while the x and y axes are

tangential to the sphere surface.
All the frames created in the previous step are collected and

searched for inverse kinematics (IK) solutions. A closed-form

analytical inverse kinematics solver IKFast [3] is employed

to find inverse kinematics solutions. For manipulators where

analytical solutions are not available, a numerical solver KDL

[15] is used which is less time-efficient due to the nature of

the solver. All reachable poses that return a valid joint solution

are stored.

D. Measure of Reachability

The reachability measure of a given voxel can be calculated

by:

DRM = (R/N) ∗ 100 (1)

where number of reachable poses is R and the total number of

discretized poses in that sphere is N . Based on the calculated

DRM , spheres are assigned to different colors ranging from

red to blue in ascending order in color spectrum. The reach-

ability map generation process is simplified in Algorithm 1.

E. Inverse Reachability Map (IRM)

Every pose in reachability map is represented as:

TTCP
global =

{
x, y, z, ρ, φ, θ

}
(2)

where {x, y, z} is the position of the TCP (Tool Center

Point) and {ρ, φ, θ} is the orientation represented in Euler

angles. Considering every pose in the reachability map to be a

transformation matrix (T ) from the origin of the robot, inverse

transformation T−1 on every pose is performed and stored as

an inverse reachability map (IRM). All the T−1 stored will

be later used in the base placement scenario where task poses

are defined by the user.

IV. BASE PLACEMENT

In this section, potential base poses for a given task is

be identified, where the task poses are completely dependent

on the user. Task poses can be a discretized trajectory or

indication of certain regions the robot has to reach for pick

and place task. All the task poses taski are transformed using

transformations T−1
j of the inverse reachability map to create

union map of all the potential base poses Bij .

Bij = taski ∗ T−1
j (3)

These solutions are only representations of base locations

of the manipulators as the reachability maps are created w.r.t

to the base of the manipulators. To obtain the potential base

locations of the robot, static transformation of the base of the

manipulator to the base of the robot needs to be applied to the

solutions, which can be identified by the URDF of the robot.

Bij = Bij ∗ (T armbase
robotbase)

−1 (4)

All the potential base poses Bij are considered to be points

and stored in an octree structure; they are processed through

a nearest neighbour (NN) algorithm that clusters together all

poses in the same voxel and been assigned a sphere for each

voxel. This procedure is the inverse process of sphere dis-

cretization process. In the previous process, poses are obtained

from spheres; here the spheres are acquired from transformed

poses. All the spheres are associated with a PlaceBase index

(DPB) representing the probability of suitable base locations

from where the task poses can be reached.

139



DPB =

⎧⎨
⎩

N ∗Bmax

Bmax −Bmin
∗ 100, if DPB ≥ 1

0, otherwise
(5)

where Bmax and Bmin are the maximum and minimum

number of possible base poses in a sphere, and N is the

number of base poses in the given sphere. The size of the

union map is the size of the inverse reachability map times

the number of task poses.

Fig. 3. Two base locations are searched for 3 task poses (magenta arrow).
The manipulator configurations from the left robot model (green) are: a) Dark
green, b) green, c) white and from the right robot model (blue) are: 1) Dark
blue, 2) blue, 3) pink

As the base of most of the wheeled or legged robot models

maintain a parallel stance with the ground, the union map can

be transferred from 6D Cartesian space SE(3) to 3DOF space

SO(2), where the only movement allowed is the rotation about

the z-axis and translation in x or y-axes. The union map is

sliced through a horizontal axis w.r.t to ground. The 3D union

map now can be considered as a 2D union map representing

potential base locations on the ground.

In Algorithm 2, m represents the user-defined number

of spheres which have the highest PlaceBase index to be

searched for base locations. As the orientation is constrained

in only one direction, the orientation direction (rotation in

z-axis) is sampled though an uniform interval to generate

multiple base poses on a single sphere. For all calculated robot

base positions, the reachability score of the task poses are

considered. From the pool of the base poses which can reach

maximum number of task poses, n base poses are considered

as final solutions. A typical solution is presented in Fig. 3,

where 2 base locations are searched with 3 task poses. Here,

the robotic system has a Husky robot as a base, and a UR5

arm as the manipulator. To consider optimal base locations,

there should be 6 manipulator states present for 3 task poses

and 2 base locations.

V. RESULTS

The Reuleaux map generation library was applied on several

robots with different specifications and sizes. Without the self-

collision checking, the average reachability map generation

Algorithm 2 Robot Base Location by Inverse Reachability

method
input (Inverse Reachability Map, task poses taski, desired

number for base locations n, spheres to be searched m) output

(n base locations)

1: procedure findbaseLocations
2: for each taski do
3: for each pose j in IRM do
4: Find Bij ∗ (T armbase

robotbase)
−1

5: end for
6: end for
7: Cluster all Bij by NN and assign spheres and DPB

8: Slice union map by 2D

9: for m spheres with max DPB do
10: sample rotations in z axis uniformly and obtain b
11: Calculate reachability score for each b
12: Find n base locations with max scores

13: end for
14: end procedure

time is 156s. However, without self-collision, the generated

map is just a collection of reachable poses, which is disad-

vantageous. Since there are no standard metric to measure the

efficiency of a reachability map, we can consider time effi-

ciency and generalizability as the metrics. As the reachability

map can be generated offline, its utility lies in using the map

in other tasks.

TABLE I
REACHABILITY MAP GENERATION

Method Robot (x100000) (x1000) Time(min)
Poses spheres

processed created
Reuleaux PR2 20.938 2552 124.31

LWR 13.718 5127 160.41
UR5 7.636 5017 143.27

Diankov et.al [3] PR2 205.48 - 490.07
LWR 145.727 - 427.11
UR5 123.513 - 371.38

Zacharias et al [4] PR2 104.69 2680 405.47
LWR 68.59 5213 542.18
UR5 38.18 4883 413.23

In Table I, an analysis of Reuleaux’s reachability map

generation method compared to two contemporary methods

[3] and [4] on three different robots is presented. PR2 right

arm is a 7DOF manipulator, rigidly connected to the robot’s

body, while the LWR (7DOF) and UR5 (6DOF) are attached

to the ground. In method [3], available as open-source library,

reachability is not represented as sphere; instead, it is rep-

resented as area. The opportunity to set the desired options

for creating maps is only limited to saving joint solutions and

setting a maximum radius. On the other hand, [4] represents

reachability as a sphere and in extension with different shape

representations. Because this method is most similar to our

approach, we also represent their work as spheres.

For all our experiments, we set the resolution of voxels

140



Fig. 4. Base Placement task on 3 different robots. The task is represented by 3 poses in a table environment. The optimal base placement is shown on a)
Kuka KR6, b)Universal UR5 and c)Motoman mh5

at 0.08m and maximum radius at 1m. For convenience, our

implementation of [4] also uses the same resolution. In Table

I, the significant difference in the number of poses processed

stems from the fact that [3] obtained the poses by default

parameters and in [4] all poses are rotated by 5 degrees in the

z-direction to obtain extra poses.

Fig. 5. Task with real Fetch robot. From left to right, top to bottom. a)
Real Fetch robot with 3 objects outside of reachable workspace, b) The
visualization of the environment with arrows pointing to grasp poses, c) 2D
union map with solutions to all task poses, d) The robot is reaching for one
of the objects after base placement

For all base placement experiments, task poses are decided

based on reach tasks. To represent a motion plan in terms

of poses, the trajectory must be uniformly sampled, which is

beyond the scope of this paper. In the simulation scenario, an

individual task pose represents a region the robot must access.

As shown in Fig. 6, the tasks with magenta arrows represent

different sections of the kitchen, such as the sink, oven, and

drawer. At the initial condition, the tasks were out of robot’s

reachable workspace. The intent of the system is to find the

optimal base location from where all the task poses could be

TABLE II
ROBOT BASE PLACEMENT PERFORMANCE

robot reachable
Time(sec)

task base soln Reach Reach
task calculation validation base task

PR2 (sim) 4/6 21.8s 0.4s 7.4s 7.1s
6/6 18.2s 0.7s 5.2s 6.23s
6/6 19.1s 0.52s 3.1s 2.1s
5/6 18.6s 0.7s 6.5s 4.78s

Fetch (real) 3/3 9.23s 0.1s 4.12 6.6s
2/3 8.71s 0.2s 3.2s 7.87s
1/3 8.23s 0.11s 7.23s 9.23s
3/3 8.6s 0.13s 4.53s 7.21s

reached. To insert the task poses in the environment, the depth

camera situated on the robot is utilized.

Fig. 6. Base Placement in simulation. From left to right, top to bottom.
a) The environment with arrows representing task poses, b) Simulated PR2
robot in a kitchen environment outside of reachable workspace, c) 2D union
map with solutions to all task poses, d) Solution execution on the robot after
base placement

An evaluation of the robot base placement method, with a

comparison with the method presented in [7] and 3 different

human users is presented in Table III. The human volunteers

are provided with a simple interface where multiple robot

141



TABLE III
ROBOT BASE PLACEMENT PERFORMANCE

Method Task Poses Reachable score Time(sec)
Solutions

Reuleaux 2 10/10 97.28 1.45
4 20/20 93.45 2.11

Vahrenkamp 2 9/10 89.7 1.77
et al [7] 4 17/20 81.17 2.64
User1 2 10/10 96.52 1.82

4 19/20 95.36 2.79
User2 2 9/10 92.8 1.75

4 19/20 94.22 3.20
User3 2 10/10 97.4 1.84

4 18/20 79.23 3.11

models can be dragged and set to be final base location

solutions. The average scores from 5 tries from the human

users are reported. The scores are based on number of task

poses reachable from the final solutions.

We also validated our base placement method: (1) in simu-

lations on a PR2 robot in Franhofer IPA Kitchen environment

and (2) using a real robot (the Fetch mobile manipulator) in

a table environment. For 4 different iterations, the robot is

started from different initial locations and the task poses are

kept different outside the robot’s reach. As result, the robot

had to move its base to an optimal base location from where

all task poses could be reached. A simplistic base path planner

is incorporated to move the robot base.

In both simulation and real environments, the task poses

were decided based on the point cloud from the robot’s

depth camera (Refer to Fig. 5b and Fig. 6b for task poses.)

The optimal base location and the 2D union map, along

with manipulator joint solutions for individual task poses, are

shown in Fig. 5c and Fig. 6c. The final condition, where the

robot successfully reaches a task pose is shown in Fig. 5d and

Fig. 6d. Table II represents the results from the real world

and simulation experiments. In some cases, the robot could not

reach the task pose due to failure in motion planning. Since we

did not consider environmental obstacle when placing bases,

in one scenario, the robot failed to reach 2 of 3 task poses

due to collision. Also, since task poses are defined by depth

sensors, depth sensor errors had a substantial negative impact

on base placement.

VI. CONCLUSIONS

In this paper, methods are proposed to create reachability

map of manipulators and find base placement solutions based

on the reachability maps where tasks are defined by users.

The characteristics that distinguish our process from other

available base placement and reachability map creation tool

is the time-efficiency and generalizability. Further, the base

solution is not limited to a single solution; the numbers of

solutions depend on the tasks and user intent. From Table III

we can infer that the robot base placement solution presents

significantly improved results vis-a-vis human intuition and

other methods. It is not possible for a human being to consider

the most optimal base locations by intuition. The limitation

of this approach is the input system of the task poses and

its exclusion of collision when planning for base placement.

The 3D depth cloud sensors are noisy and can provide an

incorrect estimation of the environment. Collision in the base

placement planning is vital, as the output base pose may be

in collision with the manipulated workpiece, worktable, and

other surroundings. Also, base placement does not depend

only on the reachability of the task poses; the power cost or

minimum joint motions should also be considered. The work

presented here is available as a self-contained C++ library at

http://wiki.ros.org/reuleaux.

ACKNOWLEDGMENTS

The authors acknowledge the opportunity provided by ROS-

Industrial and Google Summer of Code to accomplish the

work presented in this paper. The authors are grateful to

Dr.Alba Perez Gracia and Debashree Sheet Makhal for pro-

viding encouragement and support throughout the process. We

are also thankful to Prof. Maya Cakmak for providing us with

a fetch robot we could use for the experiments.

REFERENCES

[1] J. Mller, U. Frese, and T. Rfer, “Grab a mug - object detection
and grasp motion planning with the nao robot,” in 2012 12th IEEE-
RAS International Conference on Humanoid Robots (Humanoids 2012),
pp. 349–356, Nov 2012.

[2] F. Burget and M. Bennewitz, “Stance selection for humanoid grasping
tasks by inverse reachability maps,” in 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 5669–5674, May 2015.

[3] R. Diankov, Automated Construction of Robotic Manipulation Programs.
PhD thesis, Carnegie Mellon University, Robotics Institute, August
2010.

[4] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace
structure: representing robot capabilities,” in 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 3229–3236,
Oct 2007.

[5] T. Yoshikawa, Foundations of Robotics: Analysis and Control. Cam-
bridge, MA, USA: MIT Press, 1990.

[6] N. Vahrenkamp and T. Asfour, “Representing the robot’s workspace
through constrained manipulability analysis,” Auton. Robots, vol. 38,
pp. 17–30, Jan. 2015.

[7] N. Vahrenkamp, T. Asfour, and y. p. Rüdiger Dillmann, journal=2013
IEEE International Conference on Robotics and Automation, “Robot
placement based on reachability inversion,”

[8] F. Zacharias, C. Borst, M. Beetz, and G. Hirzinger, “Positioning mo-
bile manipulators to perform constrained linear trajectories,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2578–2584, Sept 2008.

[9] F. Zacharias, W. Sepp, C. Borst, and G. Hirzinger, “Using a model
of the reachable workspace to position mobile manipulators for 3-
d trajectories,” in 2009 9th IEEE-RAS International Conference on
Humanoid Robots, pp. 55–61, Dec 2009.

[10] J. Dong and J. C. Trinkle, “Orientation-based reachability map for
robot base placement,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1488–1493, Sept 2015.

[11] O. Porges, R. Lampariello, J. Artigas, A. Wedler, C. Borst, and M. A.
Roa, “Reachability and dexterity: Analysis and applications for space
robotics,” 2015.

[12] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013. Software available at
http://octomap.github.com.

[13] “FCL flexible collision library.” https://github.com/
flexible-collision-library/fcl. Accessed: 2017-07-11.

[14] J. Saff and A. Kuijlaars, “Distributing many points on the sphere,” in
Mathematical Intelligencer, vol. 19, pp. 5–11, 1997.

[15] “KDL kinematics and dynamics library (kdl).” http://wiki.ros.org/kdl.
Accessed: 2017-07-11.

142


