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Abstract—Before beginning any robot task, users must position
the robot’s base, a task that now depends entirely on user
intuition. While slight perturbation is tolerable for robots with
moveable bases, correcting the problem is imperative for fixed-
base robots if some essential task sections are out of reach. For
mobile manipulation robots, it is necessary to decide on a specific
base position before beginning manipulation tasks.

This paper presents Reuleaux, an open source library for
robot reachability analyses and base placement. It reduces the
amount of extra repositioning and removes the manual work of
identifying potential base locations. Based on the reachability
map, base placement locations of a whole robot or only the
arm can be efficiently determined. This can be applied to both
statically mounted robots, where the position of the robot and
workpiece ensure the maximum amount of work performed, and
to mobile robots, where the maximum amount of workable area
can be reached. The methods were tested on different robots of
different specifications and evaluated for tasks in simulation and
real world environment. Evaluation results indicate that Reuleaux
had significantly improved performance than prior existing
methods in terms of time-efficiency and range of applicability.

I. INTRODUCTION

The robotic industry’s ongoing advancements depend upon
state-of-the-art equipments- with unique specifications and
capabilities. As the hardware of the robotic systems are
developed, so as the softwares are metamorphosed. From the
perspective of an industry or household user, however, the
main goal of deploying a robotic system remains the same:
to successfully perform the desired task. Tasks can range
from intense industrial work such as welding, packaging, and
manipulation to relatively smaller scale of picking, placing or
grasping. For users to accept and employ a robotic system, it
must, (1) precisely execute the task, and (2) integrate well into
the user’s workspace. For both features, the user and the robot
should be aware of information about the robot’s reach and the
workspace. Without this knowledge, deployment of the robot
depends solely on user intuition. An incorrect intuition can
lead to human casualty or catastrophic damage to the robotic
system and workplace.

Non-expert users who do not have an in-depth understand-
ing of robot kinematics and the reachability challenges of
robots, might hold misconceptions that the workspace of a
robotic manipulator is sphere-shaped when the radius of the
arm is fully extended and in this region the robot’s end-effector
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can move freely. On the contrary, the robotic arm’s workspace
depends fully on the constraints posed on its arm joints. In
the workspace, there are few positions where the arm can
reach freely; in some sections of the workspace, the arm faces
singularity. In this paper, the authors conferred few methods
by which the robot’s workspace could be fully utilized and
a suitable placement of the robot or manipulator base can be
achieved.

The paper makes the following three contributions to the
field of robotic workspace analysis and base placement, 1) A
method to generate and analyze the precise reachability of any
generic robotic arm in a time-efficient manner, 2) A method
to localize the feasible base positions of the robot for any
given user task and 3) A comparison and evaluation of these
methods on different robots with distinct characteristics.

II. RELATED WORK

One of the challenges in developing a useful robotic system
is designing a platform or workspace that lets the robot to
effectively complete the desired task. Initial work on path
planning and reachability was typically performed for simple
grasp points on objects [1], which involves creating a map
representing the areas of high dexterity for the manipulators.
This work was then extended to the use of reachability maps
to solve the inverse reachability task [2] and [3], where the
optimal base placement was found in order to perform the
desired grasp on an object. Work done by [4] examined ways
to simplify the reachability map by generating a capability
map, a simplified structure that permits faster and more
efficient searches of the map in order to solve the inverse
reachability problem.

These methods are limited as they solve only the general
problem of whether or not an inverse kinematics solution was
found. A given grasp location could mean that some or all of
the solutions found could be non-optimal (near singularities
or joint limits). The work of [5] presents the concept of
manipulability ellipsoid measure, which can be derived from
a Jacobian matrix of manipulators. The size of the ellipsoid
and the principal axes represent the manipulation ability in
a certain configuration and are thus used to determine the
effectiveness of a grasp at a given location. This work was
extended in terms of grasping and manipulation in [6].
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Fig. 1.

Reachability Map representation. From left to right a) LWR 7DOF arm with self-collision checking, b) 6DOF JACO arm without self-collision

checking, c) right arm (7DOF) of PR2 mobile manipulator with self-collision checking. (Color representation with increasing reachability- Red, Yellow,

Green, SkyBlue and Blue)

To overcome the single grasp location issue, several papers
extended the inverse reachability problem to solve for trajecto-
ries. Various methods have been used to search the reachability
map in order to find the location where the desired trajectory
can be executed with the highest level of dexterity. [7] uses
sampling of the trajectory to find and overlay multiple base
placements; [8] uses a pattern search to fit the trajectory into
the area representing the field of high dexterity; and [9] uses a
cross-correlation technique to fit the desired trajectory to the
model of the robot reachability map. Further improvements
to the reachability map method were developed by [10] to
include the ability to add a transform offset from the original
end-effector location, which is useful if the robot is grasping
a tool with a non-zero length.

These methods allow planning for simple tasks, but they
require a task to be completely specified prior to evaluation.
[11] explores the case where a specific trajectory is not
given; rather the task has been simplified into a generalized
workspace environment where the robot must work. Here,
competing constraints are given. However, the operator still
evaluates and confirms the final base placement of the robot on
the mobile platform. For a simple operation with few operating
points, this can be done manually, but for more complex
parts and tasks such as welding pipes or assembling parts in
constrained spaces, a manual approach for validation may not
be feasible.

III. REACHABILITY MAP

A reachability map is a collection of all poses that the
robot’s end effector can reach. To accommodate the infinite
number of reachable poses, similar poses are clustered into
structures suitable for visualization and easy to access. The
structures also capture the directional information of reachable
poses, because several positions can be reached only from
a certain direction. An individual part of the structure is
represented as multimap data, which holds information about
it’s position, all reachable poses belonging to the structure,
and the reachability measure of that structure.
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Algorithm 1 Generate Reachability Map

input (URDF of robot)

1: procedure Generate ReachMap
2: create VoxelStructure V'

3: for each voxel v; in V' do

4: create sphere s

5: checkforSelf Collision(s)

6: Store S yijtereq in S

7: end for

8: for each s; in S do

9: Sample surface and generate poses P
10: for each j in P do

11: findIKSolution (FP;)

12: if solution then

13: Store (s;, Pj)

14: end if

15: d; = FindReachabilityM easure(s;)
16: Store d; with (s;, P;) in map

17: end for

18: end for

19: end procedure

A. Workspace Voxelization

Input to the creation of a robot reachability map procedure
is the Unified Robot Description Format (URDF) model of the
robot, from which a detailed robot description is obtained. The
robot’s hypothesized workspace is first voxelized to create a
square structure around the robot. The voxelization process is
performed by octree [12], a hierarchical data structure enabling
spatial partitioning and searching between voxels. The root
node of the octree is at the base of the manipulator, and every
node is connected to its eight children. The tree is extended
to the overestimation of the diameter of the robot arm in
an extended state. The size of the voxels required is task
dependent and thus user-defined. Tasks requiring a high degree
of accuracy will need a smaller voxel size in order to provide



more accurate results in the final base placement location. The
centers of voxels are determined, and a sphere with a radius
of the voxel’s resolution is placed in every voxel.

B. Self Collision Checking

The workspace regions where the robot body is present
should not be included in the workspace because end-effectors
cannot reach those sections due to collisions. For filtering
out such sections, as a preprocessing step, the robot body
is modeled as a collection of triangular meshes and checked
for collisions with the voxelized sphere centers. The sphere
centers in collisions with robot body are opted out of the
workspace structure; they are not further discretized for reach-
ability analysis. A collision checking library FCL [13] is used
for fast collision checking. This method provides an advantage
in terms of time efficiency since most other methods such as
[4] and [3], check for collisions only when obtaining solutions
from poses. The reachability map structure of three different
robots created with the Reuleaux library is shown in Fig. 1,
where maps in Fig. la and Fig. 1c are created with self-
collision checking and Fig. 1b is created without it.
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Fig. 2. Discretization of a single voxel in the workspace. The cube (yellow)
is the voxel to be searched. A sphere (green) is fitted inside the cube. The
sphere is discretized with probable poses (red arrow)

C. Workspace Sampling

Uniform sampling of the joint space does not guarantee
uniform sampling in the Cartesian space. For uniformly sam-
pling the task space, the spheres representing the voxels are
sampled for uniform point distribution on the sphere by the
method presented in [14]. From every point of the distribution,
a direction is assumed towards the center of the sphere. As
depicted in Fig. 2, an individual voxel of the discretized
workspace is fitted with a sphere, and the sphere is sampled
for points on its surface. From an individual point, a direction
is considered towards the center of the sphere represented by
a red arrow. Considering a frame, the direction towards the
center of the sphere is the z-axis, while the x and y axes are
tangential to the sphere surface.

All the frames created in the previous step are collected and
searched for inverse kinematics (IK) solutions. A closed-form
analytical inverse kinematics solver IKFast [3] is employed
to find inverse kinematics solutions. For manipulators where
analytical solutions are not available, a numerical solver KDL
[15] is used which is less time-efficient due to the nature of
the solver. All reachable poses that return a valid joint solution
are stored.
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D. Measure of Reachability

The reachability measure of a given voxel can be calculated
by:

Dry = (R/N) =100 (1

where number of reachable poses is R and the total number of
discretized poses in that sphere is N. Based on the calculated
Dras, spheres are assigned to different colors ranging from
red to blue in ascending order in color spectrum. The reach-
ability map generation process is simplified in Algorithm 1.

E. Inverse Reachability Map (IRM)

Every pose in reachability map is represented as:

TCP __
Tglobal -

{2.9.2,0.0.0} @)

where {z,y,z} is the position of the TCP (Tool Center
Point) and {p, ¢,0} is the orientation represented in Euler
angles. Considering every pose in the reachability map to be a
transformation matrix (7°) from the origin of the robot, inverse
transformation T~! on every pose is performed and stored as
an inverse reachability map (IRM). All the 7' stored will
be later used in the base placement scenario where task poses
are defined by the user.

IV. BASE PLACEMENT

In this section, potential base poses for a given task is
be identified, where the task poses are completely dependent
on the user. Task poses can be a discretized trajectory or
indication of certain regions the robot has to reach for pick
and place task. All the task poses task; are transformed using
transformations Tfl of the inverse reachability map to create
union map of all the potential base poses B;; .

Bij = tCLSki * Tj_l (3)

These solutions are only representations of base locations
of the manipulators as the reachability maps are created w.r.t
to the base of the manipulators. To obtain the potential base
locations of the robot, static transformation of the base of the
manipulator to the base of the robot needs to be applied to the
solutions, which can be identified by the URDF of the robot.

Bij — BZ] * (Tarmbase (4)

Tobotbase)_1

All the potential base poses B;; are considered to be points
and stored in an octree structure; they are processed through
a nearest neighbour (NN) algorithm that clusters together all
poses in the same voxel and been assigned a sphere for each
voxel. This procedure is the inverse process of sphere dis-
cretization process. In the previous process, poses are obtained
from spheres; here the spheres are acquired from transformed
poses. All the spheres are associated with a PlaceBase index
(Dpp) representing the probability of suitable base locations
from where the task poses can be reached.
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where B,,.. and B,,;, are the maximum and minimum
number of possible base poses in a sphere, and N is the
number of base poses in the given sphere. The size of the
union map is the size of the inverse reachability map times
the number of task poses.
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Fig. 3. Two base locations are searched for 3 task poses (magenta arrow).
The manipulator configurations from the left robot model (green) are: a) Dark
green, b) green, c) white and from the right robot model (blue) are: 1) Dark
blue, 2) blue, 3) pink

As the base of most of the wheeled or legged robot models
maintain a parallel stance with the ground, the union map can
be transferred from 6D Cartesian space SE(3) to 3DOF space
SO(2), where the only movement allowed is the rotation about
the z-axis and translation in = or y-axes. The union map is
sliced through a horizontal axis w.r.t to ground. The 3D union
map now can be considered as a 2D union map representing
potential base locations on the ground.

In Algorithm 2, m represents the user-defined number
of spheres which have the highest PlaceBase index to be
searched for base locations. As the orientation is constrained
in only one direction, the orientation direction (rotation in
z-axis) is sampled though an uniform interval to generate
multiple base poses on a single sphere. For all calculated robot
base positions, the reachability score of the task poses are
considered. From the pool of the base poses which can reach
maximum number of task poses, n base poses are considered
as final solutions. A typical solution is presented in Fig. 3,
where 2 base locations are searched with 3 task poses. Here,
the robotic system has a Husky robot as a base, and a URS
arm as the manipulator. To consider optimal base locations,
there should be 6 manipulator states present for 3 task poses
and 2 base locations.

V. RESULTS

The Reuleaux map generation library was applied on several
robots with different specifications and sizes. Without the self-
collision checking, the average reachability map generation
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Algorithm 2 Robot Base Location by Inverse Reachability
method

input (Inverse Reachability Map, task poses task;, desired
number for base locations n, spheres to be searched m) output
(n base locations)

procedure findbaseLocations
for each task; do
for each pose j in IRM do
Find By + (Temiese )~
end for
end for
Cluster all B;; by NN and assign spheres and Dpp
Slice union map by 2D
for m spheres with max Dpp do
sample rotations in z axis uniformly and obtain b
Calculate reachability score for each b
12: Find n base locations with max scores
13: end for
14: end procedure

1:
2
3
4
5:
6
7
8
9

10:
11:

time is 156s. However, without self-collision, the generated
map is just a collection of reachable poses, which is disad-
vantageous. Since there are no standard metric to measure the
efficiency of a reachability map, we can consider time effi-
ciency and generalizability as the metrics. As the reachability
map can be generated offline, its utility lies in using the map
in other tasks.

TABLE I
REACHABILITY MAP GENERATION
Method Robot | (x100000) | (x1000) | Time(min)

Poses spheres

processed created
Reuleaux PR2 20.938 2552 124.31
LWR 13.718 5127 160.41
URS 7.636 5017 143.27
Diankov et.al [3] PR2 205.48 - 490.07
LWR 145.727 - 427.11
URS 123.513 - 371.38
Zacharias et al [4] PR2 104.69 2680 405.47
LWR 68.59 5213 542.18
URS 38.18 4883 413.23

In Table I, an analysis of Reuleaux’s reachability map
generation method compared to two contemporary methods
[3] and [4] on three different robots is presented. PR2 right
arm is a 7DOF manipulator, rigidly connected to the robot’s
body, while the LWR (7DOF) and URS (6DOF) are attached
to the ground. In method [3], available as open-source library,
reachability is not represented as sphere; instead, it is rep-
resented as area. The opportunity to set the desired options
for creating maps is only limited to saving joint solutions and
setting a maximum radius. On the other hand, [4] represents
reachability as a sphere and in extension with different shape
representations. Because this method is most similar to our
approach, we also represent their work as spheres.

For all our experiments, we set the resolution of voxels



Fig. 4. Base Placement task on 3 different robots. The task is represented by 3 poses in a table environment. The optimal base placement is shown on a)

Kuka KR6, b)Universal URS5 and c)Motoman mh5

at 0.08m and maximum radius at 1m. For convenience, our
implementation of [4] also uses the same resolution. In Table
I, the significant difference in the number of poses processed
stems from the fact that [3] obtained the poses by default
parameters and in [4] all poses are rotated by 5 degrees in the
z-direction to obtain extra poses.

Fig. 5. Task with real Fetch robot. From left to right, top to bottom. a)
Real Fetch robot with 3 objects outside of reachable workspace, b) The
visualization of the environment with arrows pointing to grasp poses, ¢) 2D
union map with solutions to all task poses, d) The robot is reaching for one
of the objects after base placement

For all base placement experiments, task poses are decided
based on reach tasks. To represent a motion plan in terms
of poses, the trajectory must be uniformly sampled, which is
beyond the scope of this paper. In the simulation scenario, an
individual task pose represents a region the robot must access.
As shown in Fig. 6, the tasks with magenta arrows represent
different sections of the kitchen, such as the sink, oven, and
drawer. At the initial condition, the tasks were out of robot’s
reachable workspace. The intent of the system is to find the
optimal base location from where all the task poses could be
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TABLE II
ROBOT BASE PLACEMENT PERFORMANCE

Time(sec)

robot rea&%ﬁble base soln Reach | Reach
task calculation | validation base task

PR2 (sim) 4/6 21.8s 0.4s 7.4s 7.1s
6/6 18.2s 0.7s 5.2s 6.23s

6/6 19.1s 0.52s 3.1s 2.1s

5/6 18.6s 0.7s 6.5s 4.78s

Fetch (real) 3/3 9.23s 0.1s 4.12 6.6s
2/3 8.71s 0.2s 3.2s 7.87s

173 8.23s 0.11s 7.23s 9.23s

3/3 8.6s 0.13s 4.53s 7.21s

reached. To insert the task poses in the environment, the depth
camera situated on the robot is utilized.

e

Y aNe
N

Fig. 6. Base Placement in simulation. From left to right, top to bottom.
a) The environment with arrows representing task poses, b) Simulated PR2
robot in a kitchen environment outside of reachable workspace, ¢) 2D union
map with solutions to all task poses, d) Solution execution on the robot after
base placement

An evaluation of the robot base placement method, with a
comparison with the method presented in [7] and 3 different
human users is presented in Table III. The human volunteers
are provided with a simple interface where multiple robot



TABLE III
ROBOT BASE PLACEMENT PERFORMANCE

Method Task Poses | Reachable | score | Time(sec)
Solutions

Reuleaux 2 10/10 97.28 1.45
4 20/20 93.45 2.11
Vahrenkamp 2 9/10 89.7 1.77
et al [7] 4 17/20 81.17 2.64
Userl 2 10/10 96.52 1.82
4 19/20 95.36 2.79
User2 2 9/10 92.8 1.75
4 19/20 94.22 3.20
User3 2 10/10 97.4 1.84
4 18/20 79.23 3.11

models can be dragged and set to be final base location
solutions. The average scores from 5 tries from the human
users are reported. The scores are based on number of task
poses reachable from the final solutions.

We also validated our base placement method: (1) in simu-
lations on a PR2 robot in Franhofer IPA Kitchen environment
and (2) using a real robot (the Fetch mobile manipulator) in
a table environment. For 4 different iterations, the robot is
started from different initial locations and the task poses are
kept different outside the robot’s reach. As result, the robot
had to move its base to an optimal base location from where
all task poses could be reached. A simplistic base path planner
is incorporated to move the robot base.

In both simulation and real environments, the task poses
were decided based on the point cloud from the robot’s
depth camera (Refer to Fig. 5b and Fig. 6b for task poses.)
The optimal base location and the 2D union map, along
with manipulator joint solutions for individual task poses, are
shown in Fig. 5c and Fig. 6¢c. The final condition, where the
robot successfully reaches a task pose is shown in Fig. 5d and
Fig. 6d. Table II represents the results from the real world
and simulation experiments. In some cases, the robot could not
reach the task pose due to failure in motion planning. Since we
did not consider environmental obstacle when placing bases,
in one scenario, the robot failed to reach 2 of 3 task poses
due to collision. Also, since task poses are defined by depth
sensors, depth sensor errors had a substantial negative impact
on base placement.

VI. CONCLUSIONS

In this paper, methods are proposed to create reachability
map of manipulators and find base placement solutions based
on the reachability maps where tasks are defined by users.
The characteristics that distinguish our process from other
available base placement and reachability map creation tool
is the time-efficiency and generalizability. Further, the base
solution is not limited to a single solution; the numbers of
solutions depend on the tasks and user intent. From Table III
we can infer that the robot base placement solution presents
significantly improved results vis-a-vis human intuition and
other methods. It is not possible for a human being to consider
the most optimal base locations by intuition. The limitation
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of this approach is the input system of the task poses and
its exclusion of collision when planning for base placement.
The 3D depth cloud sensors are noisy and can provide an
incorrect estimation of the environment. Collision in the base
placement planning is vital, as the output base pose may be
in collision with the manipulated workpiece, worktable, and
other surroundings. Also, base placement does not depend
only on the reachability of the task poses; the power cost or
minimum joint motions should also be considered. The work
presented here is available as a self-contained C++ library at
http://wiki.ros.org/reuleaux.
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