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Abstract— Humans have at some point learned an abstraction

of the capabilities of their arms. By just looking at the scene
they can decide which places or objects they can easily reach
and which are difficult to approach. Possessing a similar
abstraction of a robot arm’s capabilities in its workspace is
important for grasp planners, path planners and task planners.
In this paper, we show that robot arm capabilities manifest
themselves as directional structures specific to workspace
regions. We introduce a representation scheme that enables to
visualize and inspect the directional structures. The directional
structures are then captured in the form of a map, which we
name the capability map.
Using this capability map, a manipulator is able to deduce
places that are easy to reach. Furthermore, a manipulator
can either transport an object to a place where versatile
manipulation is possible or a mobile manipulator or humanoid
torso can position itself to enable optimal manipulation of an
object.

I. INTRODUCTION

In infancy, humans learn to control their limbs. After
this learning process, they can reach for and grasp objects
without consciously thinking. By just looking at the scene
they know which places or objects they can easily reach and
which are difficult to approach. The survey by Kawato [1]
already verified the existence of internal models for human
motor control. But humans also seem to have an internal
map/model of their arm’s capabilities and are able to use
this representation to accomplish various tasks. If the arm
was represented as a redundant serial link manipulator, these
models could be seen to project the configuration space of
the serial chain into its cartesian workspace forming a kind of
capability map. If we had a similar map of the capabilities
for the redundant arms of our humanoid robot Justin [2]
(fig. 1), we would be able to visualize directional preferences
and existing structure in the robot arm workspace imposed
by the robot design. The information can be used to direct
grasp planners to search for valid grasps in regions where
the hand tool center point (TCP) can easily be placed by the
robot arm.

In [3] we already emphasized the importance of being able to
easily find robot target configurations that solve the subtask
and facilitate the subsequent process of finding paths in
a task planning process. The simple approach presented,
worked on a planar projection of the scene. In this paper
we derive a compact representation of kinematic reachability
and directional structure information for the whole Cartesian
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Fig. 1. The DLR humanoid two-arm system JUSTIN.

workspace of a robot arm. This representation, named capa-
bility map, is a good basis for finding easy to reach robot
arm target configurations in 3D.

To arrive at a map of robot capabilities, we will first
determine if existing criteria applied in the robot design
process can be used (section II). The applicability of the
popular manipulability concept proposed by Yoshikawa [4]
will be discussed. Then, we will derive requirements to be
met by a map of robot capabilities. In section III, we develop
a representation that fulfills the mentioned criteria. We will
evaluate the derived representation in section IV.

II. CRITERIA USED IN ROBOT DESIGN OPTIMIZATION

In the design stage, a robot manipulator is optimized with
respect to kinematic and dynamic criteria. As we intend
to use the results of the presented work to support static
planning methods, we only focus on the kinematic aspects
here. The kinematic design can furthermore be divided into
task-oriented robot design (e.g.[5]) and the design of robots
to accommodate a large variety of tasks.

In general, the robot kinematics can be optimized to maxi-
mize its workspace or to maximize various dexterity indices
with respect to specific positions or with respect to the entire
workspace. Park et al. [6] introduce general performance
criteria for workspace volume and dexterity using differential
geometry. Global indices are obtained through integration of
local criteria. Sturges et al. [7] define a dexterity measure that
relates the difficulty of an assembly task to the capabilities of
a planar robot arm. Some directional information is included
in this task-dependent difficulty measure, especially concern-
ing the accuracy of TCP movements at specific positions.
However, these indices are hard to extend to redundant

Mechatronics, German Aerospace Center (DLR), Germany,
franziska.zacharias@dlr.de spatial manipulators for service tasks.
1-4244-0912-8/07/$25.00 ©2007 IEEE. 3229



A popular means used in robot design is the analysis of the
Jacobian matrix of a manipulator. Several indices to describe
the dexterity of the manipulator have been derived thereof.
Klein et al. [8] examined the relationship of the determinant,
the condition number and the smallest singular value. With
the goal to obtain a global isotropy design parameter, Stocco
et al. [9] optimized the ratio of the maximum and the mini-
mum singular value of the Jacobian in the entire workspace
to obtain a global version of the condition number.

We are interested in capturing directional preferences rather
than in finding configurations where directionally uniform
movement is possible. Therefore especially the manipu-
lability ellipsoid [4] and derived measures proposed by
Yoshikawa will receive a closer inspection.

A. The manipulability measure

The manipulability ellipsoid in the m-dimensional Eu-
clidean space introduced by Yoshikawa [4] is intended to
quantify the ease of arbitrarily changing the position and
orientation of the end-effector. It is derived by analyzing
the Jacobian matrix of a manipulator (equation 1). The
Jacobian matrix at a robot arm configuration q relates the
joint velocities g with the total end-effector velocity in the
Cartesian space (the angular velocity wg and the translational
velocity pg).

(9)q ey

J=UxvT 2

The principal axes and singular values o; of the Jacobian are
obtained by singular-value decomposition of the Jacobian
matrix J (equation 2). Here U and VT are orthogonal
matrices, and 3 is a diagonal matrix containing the singular
values of J. The principal axes and singular values define
the orientation and the shape of the so-called manipulability
ellipsoid. The size of the ellipsoid and its major and minor
axes are assumed to represent an ability of manipulation at
a certain configuration. A singular value is interpreted as the
radius of the ellipsoid in the direction of the corresponding
principal axis. The ratio of the minimum and maximum
singular value of the ellipsoid can be used to describe the
directional uniformity of the ellipsoid and thus the direc-
tional uniformity of possible movements at the considered
configuration. The volume of the ellipsoid is known as the
manipulability measure and can be interpreted as a distance
of the manipulator from a singular configuration.
Abdel-Malek et al. [10] augment the Jacobian matrix with
joint limit criteria and redefine the manipulability measure.
The resulting measure is then used to evaluate a robot
placement with respect to certain target points.

The manipulability measure is also used in fields other than
robot design, two examples shall be mentioned. Guilamo et
al. [11] use the manipulability measure to optimize simple
trajectories. In a two stage inverse kinematics computation
for a redundant robot arm, Guilamo et al. [12] choose
configurations according to their manipulability measure.

O Tack) O WO
golox
Color

o
4747.3
0494.6
14241.9
4 18989.2
23736.5
28483.8
33231.1
37978.4
42725.7
47473
L 52220.3
Gl 56967.6
61714.9
66462.2
71209.5
75956.8
80704.1
85451.4
00198.7
94946

Fig. 2. The singularities of the right arm of the DLR humanoid robot
Justin are visualized using the manipulability measure. Link lengths were
given in cm. The TCP is located in the wrist. The workspace is cut in half
for visualization of the 3D structure.

B. Evaluation of the fitness of robot design parameters to
our problem

Criteria used for manipulator design often aim either
at reaching an isotropic performance of the manipulator
in its workspace or maximizing some global performance
index derived from local ones. These criteria are not aimed
at capturing directional structure in the workspace, rather
perhaps at smoothing the structure across the workspace.
The manipulability measure itself is directionless making it
impossible to discern directional preferences. However, it
approaches zero the closer a robot arm configuration is to
a singularity. We have used the manipulability measure to
visualize (figure! 2) the structure of the singularities for the
right arm of the DLR humanoid robot Justin [2]. The robot
workspace is discretized using small equally sized cubes. A
robot configuration is obtained by randomly sampling the
configuration space. Via the direct kinematics the Cartesian
position of the TCP is computed and mapped to a cube. For
this configuration the manipulability measure is computed.
Figure 2 shows an approximation of the distribution of the
minimum value of the manipulability measure across the
workspace. In areas which are red or very close to red,
the manipulability measure is very low. These areas either
contain singularities or are close to singularities.

When working with the manipulability measure, the choice
of the TCP is important. For our robot, we placed the
TCP in the wrist. As a result only the translational part
of our Jacobian is rank deficient at a singular configuration
within link limits. If the TCP was chosen differently the
singularities would be distributed between the translational
and rotational part of the Jacobian. The visualization of
the manipulability measure for a projection of the Jacobian
onto e.g. the translational subspace can therefore be vastly
different for two different TCPs. For the manipulability
measure in figure 2 only the translational part of the Jacobian
was used. The exact location of all singularities can be
computed by decomposing the Jacobian using the approach

IThe color table used is not optimal for printing the paper in black and
white. Please refer to the color pictures in the pdf.
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Fig. 3. TIllustrates the choices to be made by the humanoid robot Justin
concerning arm usage and approach direction.

presented by Konietschke et al. [13]. Compared to this,
the manipulability measure can be interpreted as a kind of
distance from singular configurations (compare figure 2). It
can be used to detect and avoid these.

The manipulability ellipsoid and its axes could be taken to
describe directional preferences. However, since the Jacobian
(equation 1) relates link velocities to cartesian translational
and rotational velocities, the various manipulability criteria
for the 6D cartesian space are unit dependent. Furthermore
the principal axes of the 6D manipulability ellipsoid, being
derived from the Jacobian, mix rotational and translational
components as well. Therefore we see problems concerning
their interpretability.

Since manipulability values are derived from the Jacobian at
a configuration ¢ they are purely local measurements valid
only for a small e-neighborhood. Furthermore, they do not
take link limits into account. Thus, attested good movability
at a configuration may not be possible in the desired direc-
tion due to link limits. Abdel-Malek et al. [10] augmented
the Jacobian with joint limit criteria. By introducing these
additional criteria, the manipulability measure is even harder
to interpret due to the additional unit dependency.

Due to the above mentioned problems we refrained from us-
ing the manipulability ellipsoid or measures derived thereof
to represent the robot arm capabilities. Instead, in the next
sections we reformulate the problem and develop a represen-
tation based on different ideas.

C. Reformulation of the problem

We already have a completed robot. The question is no
longer how to design it, but rather what follows from the
design. A robot arm’s workspace is not uniform with respect
to reachability. Instead, there are regions that can only be
reached from specific directions. This directional information
needs to be captured.

The DLR robot Justin is a humanoid upper body with 42
degrees of freedom (DOF). It has two redundant arms with
7 DOF each. Using Justin, we want to grasp and manipulate
objects using both arms. To decide when to use which arm,
we need to be able to evaluate which arm can e.g. best grasp
certain objects in the task space (figure 3). Moreover, due to

the redundancy of our robot arms we have to choose among
an infinite number of alternative configurations that can be
used to approach and grasp an object. Considering a mobile
manipulator the question arises how best to position the
mobile platform to have optimal manipulation capabilities
with respect to the operating area, e.g. a table.

In general, we need a representation of manipulator capa-
bilities that can be used to characterize which places are
easily reached. If only a specific direction is of interest,
this direction should be applicable to the map, resulting
in a filtered representation that masks all information but
that lying in the requested direction. Structure inherent to
the robot arm’s capabilities inside its workspace should be
easy to recognize. Using this representation the manipulator
should be able to choose good approach directions for
objects.

Representing the reachable workspace has already received
attention from other research groups. A monte carlo approach
to represent the reachable workspace by randomized sam-
pling was introduced by Guan et al. [14]. However, they only
provide true/false information concerning the reachability of
regions. No directional structure can be discerned from their
representation.

III. THE CAPABILITY MAP APPROACH

The ability of humans to manipulate objects depends on

the position of their arm in the workspace. Two-handed
manipulation is limited to a region where the workspaces
of both arms overlap. The best performance is achieved in
an even smaller subspace. The same is true for the humanoid
robot Justin, whose design is oriented at the human model.
In general, every robot arm is designed differently, and there-
fore has different capabilities. We show that these capabilities
result in directional structures specific to workspace regions,
and that these structures can be captured and represented in
the form of a directional map. As a first step, we introduce
a visualization scheme to detect the structure. In a second
step, the data of the map is reduced while preserving the
stored information to use it for grasp and task planning.
We illustrate our approach using the right arm of the DLR
humanoid robot Justin.
In a nutshell, the workspace structure is extracted through
discretization, randomized sampling, analysis and optimiza-
tion processes. The robot arm reachability in a certain region
of the workspace is examined using inverse kinematics.
We will show that indeed structure of the workspace does
become obvious. And we will then capture this structure
using shape primitives.

A. Discretization

The theoretically possible workspace of the robot arm
can be encapsulated by a cube with a sidelength of two
arm lengths centered at the robot arm base (figure 4). The
maximum workspace of the arm is thereby overestimated.
The envelopping cube is then subdivided into equally sized
smaller cubes. Using this discretization, we make visual-
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Fig. 4. The maximum workspace of the right arm is overestimated by the
envelopping cube which is divided into subcubes of 300 mm sidelength.

ization possible and can analyse specific regions of the
workspace in task planning processes.

B. Randomized sampling

The configuration space is randomly sampled according to
a uniform distribution. For each configuration the position of
the TCP is computed via the direct kinematics. In Figure 4
the TCP position is indicated by the coordinate frame in the
hand. The TCP position is then mapped to the subcube that
contains this position.
It could be considered to use the number of randomly
sampled configurations mapped to a subcube as a measure
of reachability for a region. The hope would be that the
number of sampled configurations assigned to a specific
subcube correlates with that region being easily reach-
able especially w.r.t. exploiting redundancy and versatile
manipulation. However this is a false conclusion. When
a robot is in a singular configuration, large steps in the
configuration space for the links causing the singularity
result in small motions in the cartesian workspace. Thus
especially in regions containing singularities a large amount
of sampled configurations are mapped to subcubes. Therefore
the number of configurations mapped to a cube cannot be
used to distinguish regions where versatile manipulation is
possible. Furthermore is does not allow to discern directional
structure. As a consequence, in the next step we use inverse
kinematics to examine the workspace.

C. Using the inverse kinematics to examine the workspace

Into each cube a sphere with a diameter equal to the width
of the cube is inscribed (figure 5(a)). Using the spiral point
algorithm proposed by Saff et al. [15] we generate N equally
distributed points on the sphere. For each point thus obtained,
we generate a frame. In figure 5(b) the frame is shown
with the x-axis (red) and the y-axis (green) tangential to the
sphere and the z-axis (blue) pointing towards its center. The

Fig. 5. Shows a sphere inscribed into the cube (a), exemplary frames for a
point on the sphere (b), valid inverse kinematics solutions on a sphere (c).

frame is then turned around its z-axis according to a fixed
stepsize. Each resulting frame is considered to constitute a
TCP frame to be reached by the arm in question and an
inverse kinematics solution is computed. If for one of the
rotated frames at a specific point p on the sphere an inverse
kinematics solution is available, that point p is marked in
the underlying datastructure. It is important to mention that
thus the z-orientation of the TCP w.r.t. the sphere center is
discarded.

The inverse kinematics for our 7 DOF redundant robot arm
is computed by combining an analytical solution as proposed
by Craig [16] with optimization procedures to optimize the
redundant degree of freedom [17]. The randomly sampled
configuration is taken as the initial configuration supplied
to the inverse kinematics. Since an inverse kinematics for
redundant robots does not have a single unique solution
and involves some iterative optimization, a starting solution,
that is already near the desired solution is beneficial for the
computation.

D. Reachability spheres to characterize the workspace

In the visualization, for each valid inverse kinematics
solution on a sphere, a line is drawn originating in the sphere
center (figure 5(c)). The spheres visualize the reachability for
a region. We therefore call them reachability spheres. We
assign a measure called the reachability index D (equation
3) to each sphere characterizing the reachability of the region
enclosed by the sphere. In equation 3, N is the total number
of points on a sphere and R is the number of valid inverse
kinematics solutions recorded. The resulting value informs
about the percentage of points on the sphere, having an
inverse kinematics solution.

Dz%-lOOwithRSN 3)

Using the reachability index, already some structure inherent
to the robot workspace can be visualized. To achieve this, the
spheres are colored with respect to their reachability index D.
Figure 6 presents the change of the reachability index across
the robot arm workspace. As expected, as we move into
the interior of the workspace the index gets better reaching
its optimum in the blue region. The nearer we then come
to the robot arm base the more the index decreases. The
reachability index D for our robot arm ranges from O to 76.
For better visibility, in some figures the full workspace is cut
in half along the arm as shown in figure 7. Figure 8 (top)
shows all spheres with an index D in the lowest 10 percent
of the reachability index (D € [0, 8]) across the workspace.
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Fig. 6. Shows the reachability spheres across the workspace. The
workspace representation was cut as shown in fig. 7 for better visibility
of the structure.

Fig. 7. Visualizes the cut across the workspace of the robot arm.

Fig. 8. Shows the spheres with an index D in the lowest 10% of the
reachability index (top) and in the upper 10% of the reachability index
(bottom).

Fig. 9.
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Shows spheres from the border of the workspace moving inward.
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Fig. 10. A close up of the spheres from fig. 9 with corresponding color
table for the reachability index.

As expected the spheres with the lowest index are on the
border of the workspace. Figure 8 (bottom) shows spheres
with an index D in the top 10 percent of the reachability
index (D € [68,76]) across the workspace. It can be seen
that spheres with a good index D lie on somewhat more
than a half a sphere shell around the robot arm base (also
compare figure 6) with a diameter of approximately half the
robot arm length. We would get a complete sphere shell when
disregarding the link limits. For figure 6 to 8, 10% random
samples were drawn. The spheres have a radius of 25 mm
and 200 points are distributed on a sphere. The stepsize for
turning the frame around its z-axis is 30 degrees.

E. Analyzing the structures in the workspace

The reachability index again is a directionless measure.
While it does help to recognize structure it does not fulfill
our requirements defined in section II-C. The reachability
spheres are able to represent directional preferences but
testing a specific direction against all valid candidates on
every sphere is computationally quite expensive. Further-
more, the spheres also cover all those points where no valid
inverse kinematics solutions were found. In this section we
have a closer look at the geometric structure present in the
workspace and represented by reachability spheres.

Figure 9 shows reachability spheres on a line across the
workspace marked by a box. For better recognizability, figure
10 shows a zoomed view. As expected, it can be observed
that as we move into the workspace (starting with the red
sphere) the number of points with valid inverse kinematics
solutions increases. Having a closer look at each sphere
and the distribution of the inverse kinematics solutions, we
observe a cone like structure for the red, yellow and light
green spheres. As we move further inwards, the cones open
out and the structure changes. For the dark blue spheres, a
ring structure can be observed. Although not present in figure
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Fig. 11. Cones (a) and two cylinder types to capture structures. (b) Cylinder
type tl (c) Cylinder type t2

10, double cone structures have also been found.

Capturing and approximating the structures using shape
primitives such as cones and cylinders would result in im-
mense data reduction. Testing directions against these shape
primitives is a lot faster than testing against single inverse
kinematics solutions. To determine whether a direction vector
lies in a cone and thus whether inverse kinematics solutions
are available reduces to one computation of the angle be-
tween the shape’s axis and the direction.

The attached video shows the spheres from figure 10 and
fitted shape primitives. The spheres and shape primitives are
rotated to enable a thorough inspection.

F. Capturing the structure to construct a map

In this section, we describe how and what shape primitives
were fitted to the data. We introduce a measure based
on the relative error of an approximation to evaluate the
appropriateness of a shape primitive to the structure captured
by a reachability sphere.

As a consequence of the observations from the last section,
we propose the shape primitives presented in figure 11.
Cones can be used to approximate cone-like structures (figure
11 (a)). A cylinder of type tl (figure 11 (b)) can capture
double cone structures and a cylinder of type t2 (figure
11 (¢)) can capture ring structures. The process of fitting
the shape primitives to the data involves optimizing the
main axis of the shape primitive and its opening angle
to best approximate the data. The axis is optimized using
principal component analysis. To optimize the opening angle
we evaluate the appropriateness of the shape primitive to
represent the data for different opening angles.

The appropriateness of a shape primitive is determined by
how many of the valid inverse kinematics solutions the shape
captures (reachable points), but also by how many points of
the sphere are included, where no inverse kinematics solution
could be computed (unreachable points). We combine these
observations in the computation of the shape fit error (SFE).
The SFE is computed for a shape primitive with axis @ and
opening angle o (compare figure 12). It is derived from the
relative error made by the shape fitting process to capture all
inverse kinematics solutions available for a sphere. The ideal
shape covers all R inverse kinematics solutions available for
a sphere. Compared to an ideal approximation, a suboptimal
shape fails to cover r reachable points and wrongly covers u

(b) (©

Fig. 12.  (a) A cone with axis @ and opening angle «. (b) The Cylinder
with a SFE=100 is not fitted well to the data. (c) The cylinder is optimally
fitted to the data used in (b) and has a SFE=0.

unreachable points. It has an approximation value of R —u —
r. Thus we define the relative error of an approximation by
subtracting the ideal approximation value R from the value
for a suboptimal shape and divide the result by the ideal
value R (equation 4 with r,u > 0). The shape fit error is
then defined in equation 5 using this relative error. The SFE
is limited to [0,100]. If a shape has a relative error greater
than 1, it is no better approximation than a shape with a
relative error of 1. Both are unacceptable. Therefore both
receive the maximum SFE of 100.

Figure 12(b), (c) show a cylinder of type t1 with two different
axes and opening angles fit to the same data set. While the
first version collects all lines, it also covers many unreachable
points and receives the highest SFE of 100 as a result. The
data is optimally represented by the second cylinder (fig.
12(c)) receiving the optimum SFE=0.

R—u—7r)—R —u—r u—+r
( R) :‘ R | R @
utr 100 ifu+r<R

SFE(‘W)_{ "00 ifu+r>R 3)
The results of replacing the spheres by the best fitting cone
or the best fitting cylinder of type t2 (compare fig. 11) are
shown in figure 13 and figure 14. The lines symbolizing
inverse kinematics solutions have been removed for better
visibility. As we expected and see in figure 13, in the outer
zones of the workspace cones are good approximations and
have a low SFE shown by the blue coloring. Only for the
inner workspace region do cones have high SFEs. Here,
cylinders are a solution. Cylinders receive low SFEs in the
inner (blue) workspace regions (figure 14). For the remaining
workspace, the cylinder hypothese is inadequate and the
SFE is maximum. Thus cones and cylinders representations
complement each other. These results suggest that it would
be best to take the shapes with the lowest SFE from all three
shape fitting processes to obtain a mixed map that is better
able to represent all structures found in the workspace.

IV. EVALUATION OF THE ROBOT CAPABILITY MAPS

In this section we will evaluate the quality of the derived
capability maps. We computed the cone, cylinder and mixed
map for the right arm of the DLR humanoid two-arm system
Justin. 108 configuration space samples were drawn. And 200
points were distributed on a sphere with radius=25 mm. The
mean and the standard deviation of the SFE across the robot
arm workspace will serve as a performance indicator.
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Fig. 13. The cone best fitting the inverse kinematics data replaces the
reachability sphere.

Fig. 14. The cylinder (type t2) best fitting the inverse kinematics data
replaces the reachability sphere.

SFE spheres cones cylinder t1 cylinder t2 mixed optimal
mean 87.8 126 85.9 82.2 7.2 0
std. dev. 213 202 23 30.6 10.7 0
TABLE I

PERFORMANCE FIGURES FOR DIFFERENT REPRESENTATIONS (SPHERE
RADIUS=25 MM, 106 SAMPLES, Z-STEP SIZE=30 DEG)

absolute frequency

0 P T T RO SO S R
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 5 90 9% 10
shape fit ewor (SFE)

Fig. 15. Absolute frequency of the SFE visualized as a histogram.

Table I shows the performance figures rounded to the first
decimal place for capturing structures with spheres, cones
and cylinders. To obtain the mixed map (fifth column), we
always choose the shape with the lowest SFE and place it in
the map.

Using cones to approximate the structures in the workspace
already leads to a low mean SFE. Figure 13 shows that for
the majority of the cones, the SFE is low which explains
the low mean in table I. Both cylinder maps have a mean

SFE significantly higher than the cone map. Compared to
the cones, only the inner part of the workspace can be
represented well by cylinders, resulting in this high mean
SFE. As expected, the mean SFE is lowest for the map that
mixes cones and cylinders. The standard deviation has also
improved significantly. Figure 15 shows the histogram of the
absolute frequency of the SFE. It confirms that the majority
of the shapes fit the data well.

We can conclude that the mixed map presents the workspace
structure well and therefore the robot capabilities in its
workspace. We will now call it capability map. It fulfills
the criteria developed in section II-C. Combined with the
reachability index, it can be used to recognize places in the
workspace enabling versatile manipulation of objects. Fur-
thermore, the capability map facilitates the search for good
directions to approach objects since it encodes directions in

a compact form. If only a specific direction is of interest all

shapes failing to satisfy this direction can be masked.

V. THE CAPABILITY MAP IN GRASP AND MOTION
PLANNING

In this section, we will sketch two application szenarios
for the capability map. The shapes in the capability map are
characterized by two indices, the reachability index (eq. 3)
and the SFE (eq. 5). Using the reachability index, regions
can be identified where versatile manipulation is possible,
i.e. the blue regions in figure 6. These regions could then be
superimposed over objects to be manipulated e.g. by moving
the torso. Figure 16 shows the DLR robot Justin in its home
position. The bottle is situated at the border of the robot
reachable workspace. By positioning of the torso, the bottle
can be overlaid with the region of the capability map where
the reachability index is highest (D€[68,76]) allowing for
more alternatives to reach the object and exploitation of
redundancy. The map can thus be used to position the torso
of the DLR robot Justin or a mobile manipulator to optimally
reach objects.

A grasp planer as developed by Borst et al. [18] generates
stable grasps for objects disregarding kinematic constraints
or obstacles. Figure 3 illustrates a number of grasp directions
for one object. Some are merely awkward and others are
kinematically unreachable. If additional obstacles were added
more grasps would have to be discarded. However, the
number of valid grasps is still infinite.

Choosing a single position on the object and requesting a
grasp can result in the failure of the grasp planning algorithm.
While the position may be kinematically reachable, no stable
grasp can be computed. At this point the capability map can
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Fig. 16. Positioning the torso using the capability map.
representation | reachability = homogenous  capability total
type spheres shape map map
time ‘ 123 h 1.8 min 6.4 min 124 h
TABLE II

COMPUTATION TIMES FOR BUILDING THE REPRESENTATIONS.

be used to preselect regions for generating grasps that give
the grasp planner the freedom it needs while ensuring that the
generated grasps can be reached. We will therefore combine
the map with our grasp planner [18] to speed up the grasp
generation process.

VI. CONCLUSIONS AND FUTURE WORK

Structure is indeed present in a manipulator’s workspace
and can be captured in the form of a map. We developed the
representation called the capability map to capture the ma-
nipulator capabilities in its workspace. The map is anchored
a the robot arm base and moves with the upper body.

The capability map is computed offline for a specific robot
arm. Table II shows computation times for building the
reachability sphere representation, a homogenous shape map
(only one shape type) and the final mixed map, i.e. the
capability map. The total computation time is derived by
adding column 1 and 3. While we did not optimize the
algorithms, it can be seen that computation has to be done
offline. The derived capability map can then be consulted
online e.g. in grasp placement decision modules.

It is especially useful for two-armed humanoid robots. Hu-
manoid robots, e.g. Justin, could use this representation to
decide which arm is best suited for certain tasks. Two-handed
manipulation of an object can be done at a location where
versatile regrasping is possible. Using the capability map to
solve the problem of finding an approach and grasp direction
that facilitates the work of path planners [3] is possible.
Furthermore, the maps could perhaps be used to develop
cartesian space path planners or evaluate and compare robot
designs.

Some of the shapes fitted to the data still include a few points
on the sphere for which no inverse kinematics solution was
found. It remains to be evaluated how often these positions
are encountered by e.g. grasp planners using the map to
preselect locations for the generation of grasps.

The generation process of the capability map or the inverse
kinematics needs to discard configurations that cause self-
collisions or collision with the table that Justin is perma-
nently attached to. Considering that our robot arms are
redundant, it remains an open question whether this should
be done by or external to the inverse kinematics.

The capability map does not discriminate regions containing
singularities. These situations can either be resolved by the
control algorithm driving through a singularity. Or these
situations can be addressed by combining the capability map
with a singularity map based on the manipulability measure,
e.g. shown in figure 2.
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